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Simply stated, the brain is a remarkable information processor that operates
with principles that are completely different from those informing modern
computers. Information is represented in the brain by spatio-temporal patterns
of excitation spread over a large number of neurons and the brain processes
information in parallel through the dynamic interactions of neurons so that
efficient and flexible information processing takes place. Also, one of the most
interesting features of the brain is that it creates a model of the world by
learning and self-organization.

As the design of new systems is getting increasingly inspired by the func-
tions and mechanisms of the brain, these principles have started to shape the
development of information technology through a new science that is now com-
monly referred to as neurocomputing. One of the goals of neurocomputing is
to establish a new type of information science as an indispensable step toward
understanding how the brain works. This is also a necessary step toward cre-
ating brain-style information technology. Such trend has been made possible
through the art of mathematical neuroscience, whose aim is to elucidate the
principles of the brain by establishing mathematical theories on how it works.

Mathematical theories provide insights into how the brain might function as
well as powerful analysis tools to test those ideas. Unlike the developmen-
tal drivers in computer science, which have traditionally relied exclusively on
logic and algebra to produce algorithms and computability, neurocomputing
has drawn from a variety of mathematical approaches in its pursuits. Math-
ematical analysis, and nonlinear analysis in particular, dominates neurocom-
puting because learning takes place in neurons, which are nonlinear elements of
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analog computation that rely on parallel dynamics. Neurons also fire stochas-
tically, making probability theory and statistics fundamental means to model
the dynamics of learning using stochastic equations.

Geometry, however, while being a part of the mathematical bedrock, has yet to
be embraced by neurocomputing. The intrinsic and deep structures of subjects,
where invariant properties are sought for, can be intuited through geometry.
Invariant structures abound in neural networks: Perhaps that is why geomet-
rical theories have been gradually creeping into mathematical neuroscience.
Understanding the underlying geometric structure of a network’s parameter
space is extremely important to designing systems that can effectively nav-
igate the space while learning. Although modern mathematics is needed in
the research of neural networks, and there are some very powerful results and
techniques in these geometric methods, these are currently scattered in various
sources and research directions.

The present special issues accommodates some general contributions on the
usefulness of general algebraic-geometric theories in neurocomputing and ma-
chine learning.

The manuscript “Geometrical learning, descriptive geometry, and biomimetic
pattern recognition”, authored by Shoujue Wang and Jiangliang Lai, pro-
poses a geometrical learning theory from the perspective of high-dimensional
descriptive geometry. Geometrical properties of high dimensional structures
underlying a set of samples are learned via successive projections from the
higher dimension to the lower dimension until 2D Euclidean plane, under
guidance of the established properties and theorems in high dimensional de-
scriptive geometry. Specifically, the Authors introduce a novel methodology
for learning samples and provide a geometrical learning algorithm that is then
applied to biomimetic pattern recognition. Experimental results are presented
in the paper to show that the proposed approach outperforms three types of
SVMs with either a three degree polynomial kernel or a radial basis function
kernel, especially in the cases of high dimensional samples.

The article “Nonlinear dimensionality reduction of data manifolds with es-
sential loops”, authored by John Aldo Lee and Michel Verleysen, is based on
the preliminary observation that numerous methods or algorithms have been
designed to solve the problem of non-linear dimensionality reduction (NLDR),
however, very few among them are able to embed efficiently ‘circular’ mani-
folds like cylinders or tori, which have one or more essential loops. The paper
presents a simple and fast procedure that can tear or cut those manifolds,
i.e. break their essential loops, in order to make their embedding in a low-
dimensional space easier. The key idea introduced in the manuscript is that,
starting from the available data points, the tearing procedure represents the
underlying manifold by a graph and then builds a maximum sub-graph with
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no loops. As the procedure works with graphs, it can preprocess data for
all NLDR techniques that make use of the same representation. Recent tech-
niques falling in such category are those making use of geodesic distances, such
as ISOMAP, geodesic Sammon’s mapping and geodesic curvilinear component
analysis, or those based on k-ary neighborhoods, like locally linear embedding,
Hessian locally linear embedding and laplacean eigenmaps.

The contribution “Geometric preprocessing, geometric feedforward neural net-
works and Clifford support vector machines for visual learning”, authored by
Eduardo Bayro-Corrochano, Refugio Vallejo and Nancy Arana-Daniel, aims at
showing the design and use of feed-forward neural networks and the Support
Vector Machines in the coordinate-free mathematical system of the Clifford
geometric algebra. The Authors compare the McCulloch–Pitts neuron and the
geometric neuron. An instance of geometric neuron is the conformal neuron
which can be used for RBF networks and Support Vector Machines. The paper
presents the generalization of the real- and complex-valued multilayer percep-
tron to the Clifford-valued multilayer perceptron. The paper studies also the
Multivector Support Vector Machines which are SVMs for processing mul-
tivectors, for which the Authors design kernels involving Clifford products.
The resultant kernel resembles a sort of polynomial kernel using a multivec-
tor representation. In the context of SVMs, a contribution of the paper is
the generalization of the real- and complex-valued Support Vector Machines
classifiers over the hyper-complex numbers. This Clifford-valued Support Vec-
tor Machine accepts multiple multivector inputs and behaves as a multi-class
classifier. For the pre-processing, the Authors introduce a geometric method
based on Clifford moments. This method is applied together with geometric
MLPs for tasks related to 2D pattern recognition. The experimental part of
the manuscript shows applications of Support Vector Machines using the con-
formal neuron and Clifford kernels. The Authors include applications of the
Clifford SVM classifier for nonlinear separable problems.

Differential geometry, or its offshoot information geometry, has been invoked to
understand the dynamics of neuromanifolds and learning dynamics. Natural
gradient learning is one example of success from this line of investigation.
Also, the theory of Lie groups, which are differentiable manifolds with group
properties of algebraic operations, have recently gained increasing interest in
the neurocomputing community. In studying these groups, it is possible to
elucidate other structures in which group operation plays an important role:
Grassmann manifolds and Stiefel manifolds are examples of structures that
were derived from the Lie group structure and that contribute significantly
to linear and nonlinear systems as well as independent component analysis
(ICA) in signal processing.

With reference to these topics, the present special issue accommodates some
contributions.
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The manuscript “Learning algorithms utilizing quasi-geodesic flows on the
Stiefel manifold”, authored by Yasunori Nishimori and Shotaro Akaho, ex-
tends the natural gradient method for neural networks to the case in which the
weight vectors are constrained to the Stiefel manifold. The proposed method
involves integration techniques of the gradient flow that do not violate the
manifold constraints, based on geodesics. The Authors formulate the previ-
ously proposed natural gradient and geodesics on the manifold exploiting the
fact that the Stiefel manifold is a homogeneous space transitively acted upon
by the orthogonal group. On the basis of it, the Authors develop a simpler
updating rule and a one-parameter family of generalized updating rules. The
effectiveness of the proposed methods is validated by experiments on minor
subspace analysis and independent component analysis.

The manuscript “Tools for application-driven dimension reduction”, authored
by Anuj Srivastava and Xiuwen Liu, observes that simplicity and efficiency
of linear transformations make them a popular tool for extracting features
and reducing dimensions of data before or during statistical analysis. This is
relevant in applications involving image compression and reconstruction, dis-
criminant analysis, pattern classification, and image or text retrieval. Linear
transformations with natural orthogonality constraints can be represented as
elements of the Stiefel and Grassmann manifolds. The Authors advocate that
the choice of a transformation for dimension reduction is not standard, but it is
dictated by the application at hand and by the data set, and can be formulated
as an optimization problem on the above-mentioned manifolds. The authors
demonstrate this idea by deriving dimension-reducing transformations in ap-
plications such as image-based object recognition and content-based image
retrieval.

The paper “Geometrical methods for non-negative ICA: Manifolds, Lie groups
and toral subalgebras”, authored by Mark Plumbey, explores the use of geo-
metrical methods to tackle the non-negative independent component analysis
problem. The Author concentrates on methods based on the minimization of
a cost function over the space of orthogonal matrices. The paper recalls the
idea of the Lie group of special orthogonal matrices that it is wished to search
over, and explains how this is related to the Lie algebra of skew-symmetric
matrices. The Author describes how familiar optimization methods such as
steepest-descent and conjugate gradients can be transformed into such Lie-
group setting and how the Newton update step has an alternative Fourier
version in the special orthogonal group. Finally, the Author introduces the
concept of a toral subgroup generated by a particular element of the Lie group
or Lie algebra, and explore how this commutative subgroup might be used to
simplify searches on the constraint surface.

Over the last decade or so, driven greatly by the work on information geome-
try, we are seeing the merging of the fields of statistics and geometry applied
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to neural network, learning and biological modeling. An example of the lat-
ter topic is recognized in the development of “tensor network theory of the
cerebellum”. From the theoretical side, the functioning of the cerebellum was
given a possible mathematical explanation both in its structuro-functional
properties (sensorimotor metric tensor of the spacetime manifold) and in its
physiological and pathological growth.

Topology and differential forms are among the other ingredients of geometry
that have started to influence neurocomputing. Algebraic geometry, among
the most abstract of mathematical theories, has also been successfully applied
to the study of neural networks to elucidate their learning capabilities since
neuromanifolds include algebraic singularities.

The present special issue accommodates the contribution “Algebraic geome-
try of singular learning machines and symmetry of generalization and training
errors”, authored by Sumio Watanabe, which is based on the observation that
several hierarchical learning machines, such as neural networks and normal
mixtures, are singular learning machines, for which the likelihood function can
not be approximated by any quadratic form, therefore the conventional statis-
tical theory does not hold for them. The paper proves the symmetry property
of the generalization and training errors based on an algebraic-geometrical
method. In particular, a new parameterization is introduced by applying the
resolution of singularities. Then, the asymptotic behavior of the likelihood
function is clarified based on the empirical process theory. In conclusion, the
asymptotic forms of the generalization and training errors are derived. The net
result of the proposed study is a mathematical foundation of model selection
and hypothesis testing in singular learning machines.

Neural networks are widely used as flexible models for regression and classifi-
cation applications, but questions remain open about how neural networks can
be safely used when training data is limited. Bayesian learning for neural net-
works shows for instance that Bayesian methods allow complex neural network
models to be used without fear of the over-fitting that can occur with tradi-
tional neural network learning methods. Also, conventional training methods
for multilayer perceptrons can be interpreted in statistical terms as instances
of maximum likelihood estimation. In this theoretical setting, the idea is to
find a single set of parameters for the network that maximizes the fit to the
training data. Insights into the nature of these complex Bayesian models may
be gained by a theoretical investigation of the priors over functions that un-
derlie them. Both the theoretical and computational aspects of this work are
of wide interest in the neurocomputing and machine learning area, as they can
contribute to a better understanding of how Bayesian methods can be applied
to complex problems.

The present issue accommodates the article “The geometry of prior selec-
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tion”, authored by Hichem Snoussi, which is devoted to the selection of prior
in a Bayesian learning framework. There is an extensive literature on the con-
struction of non-informative priors and the subject seems far from a definite
solution. The Author considers this problem with information geometric tools.
The differential geometric analysis allows the formulation of the prior selection
problem in a general manifold-valued set of probability distributions. In order
to construct the prior distribution, the Author proposes a criterion express-
ing the trade-off between the decision error and the uniformity constraint.
The solution has an explicit expression obtained by variational calculus. In
addition, the proposed solution has two important invariance properties: In-
variance to the dominant measure of the data-space and also invariance to the
parameterization of a restricted parametric manifold. The Author shows how
the construction of a prior by projection is the best way to take into account
the restriction to a particular family of parametric models. For instance, this
procedure is applied to autoparallel restricted families. Two practical exam-
ples given in the paper illustrate the proposed construction of prior: The first
example deals with the learning of a mixture of multivariate Gaussians in
a classification perspective. The Author shows in this learning problem how
the penalization of likelihood by the proposed prior eliminates the degeneracy
occurring when approaching singularity points. The second example concerns
the blind source separation problem.

The present issue also accommodates the contribution “Lattice Duality: The
origin of probability and entropy”, authored by Kevin Knuth, which begins
with the observation that Bayesian probability theory is an inference calculus
that originates from a generalization of inclusion on the Boolean lattice of
logical assertions to a degree of inclusion represented by a real number. Dual to
this lattice is the distributive lattice of questions constructed from the ordered
set of down-sets of assertions, which forms the foundation of the calculus of
inquiry - a generalization of information theory. In this paper, the Author
introduces this novel perspective on these spaces in which machine learning
is performed and discusses the relationship between these results and several
proposed generalizations of information theory in the literature.

The interest displayed by the scientific community into research topics related
to the geometry of neural networks and of learning machines is also testified
by several academic activities, among which we wish to mention:

• The special issue on “Non-Gradient Learning Techniques” of the Interna-
tional Journal of Neural Systems (guest editors A. de Carvalho and S.C.
Kremer).

• The Post-NIPS∗2000 workshop on “Geometric and Quantum Methods in
Learning”, organized by S.-i. Amari, A. Assadi and T. Poggio (Colorado,
December 2000).

• The workshop “Uncertainty in geometric computations” held in Sheffield,
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England, in July 2001, organized by J. Winkler and M. Niranjan (University
of Sheffield, UK).

• The special session of the 2002 International Joint Conference on Neural
Networks Conference dedicated to “Differential & Computational Geometry
in Neural Networks” (session chair: E. Bayro-Corrochano) held in Honolulu,
Hawaii (USA), in May.

• The workshop “Information Geometry and its Applications”, held in Pescara
(Italy), in July 2002, organized by P. Gibilisco.

• The special session of the 13th European Symposium on Artificial Neural
Networks dedicated to “Dynamical and Numerical Aspects of Neural Com-
puting”, to be held in Bruges (Belgium) in April 2005, organized by M.
Atencia.

We believe the time is ripe for establishing geometrical theories of neurocom-
puting. Many of the scattered topics and theories that have recently emerged
have been gathered here, in a special issue on geometrical theories applied
to neural networks and learning, to kick off this effort. In particular, Neuro-
computing journal dedicates a special issue to the theory and advanced ap-
plications of geometric concepts to neural learning and optimization, bringing
together contributions well founded in modern mathematics.

While some of the topics presented in the special issue might seem discon-
nected or fragmented, they are the seeds that will hopefully sow the geomet-
rical theories for neurocomputing. The Readers will have for the first time a
collection of approaches including differential geometrical methods for learn-
ing, the Lie group learning algorithms, the natural (Riemannian) gradient
techniques, learning by weight flows on Stiefel-Grassmann manifolds, the the-
ories for learning on orthogonal group, theories for neurocomputing based on
Clifford geometric algebra, the numerical aspects of the solution of the matrix-
equations on Lie groups arising in neural learning/optimization and related
topics, along with applications of differential geometry to Bayesian learning
and reasoning.

As a concluding remark, we wish to express our gratitude to the following
people, without whom this special issue could not have been born:

• The journal Editor, Tom Heskes, for enthusiastically approving the special
issue proposal and for his constant support during all the phases of its
preparation.

• All the Authors of submitted papers for giving us the opportunity to con-
sider their valuable contributions.

• All the Reviewers we got in touch with during the preparation of the special
issue, who performed quick and thorough reviews and made an excellent
cooperation job.
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Some phases of the preparation of this issue were managed when S. Fiori
was visiting the Mathematical Neuroscience Laboratory at the Brain Science
Institute of RIKEN in Japan (in March 2004 and later on in August 2004).
S. Fiori wishes to gratefully thank the Brain Science Institute director, Prof.
S.-i. Amari, as well as all the laboratory members, for the warmest and kindest
hospitality.

November 25, 2004

Simone Fiori and Shun-ichi Amari
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