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Abstract

In some blind signal processing tasks, such as blind source decon-
volution and blind source separation, the optimal signal processing
structure is designed adaptively through cost function optimization.
A class of cost functions known in the literature is based on pseudo-
error defined on the basis of Bayesian estimation of the source signals.
The exact Bayesian estimators may rarely be computed, so that their
neural approximations are often invoked. The present paper aims at
investigating the self-consistency of the cost functions based on such
neural Bayesian estimators.

1 Introduction

Blind system deconvolution and blind source separation have become popu-
lar research fields in the signal processing and neural network communities
over the recent years [3, 4]. They concern the recovery of a time-series dis-
torted by a system with memory and the recovery of a set of random signals
from their mixtures induced by a system, respectively. The term ‘blind’ de-
notes the partial lack of knowledge of the involved signals and of the features
of the distorting systems.

Although motivated by different applications, the two research streams
possess several common points and, in fact, may be formulated within com-
mon frameworks (see e.g. [1, 3]). One of the common frameworks may be
the optimization of a cost function based on a pseudo-error defined on the
basis of Bayesian estimation of the source signals. In blind deconvolution,
this approach was initially proposed by Bellini [2], while in blind separation
such interpretation was proposed by Oja [11].

Because of the blindness of the problem, however, the exact Bayesian
estimators required in order to compute the cost functions to be optimized
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may be rarely accessed, so that their neural approximations are often in-
voked. That is, approximated Bayesian estimators are to be learnt from the
available data as well as the deconvolution/separation structures’ parame-
ters.

In blind deconvolution, the idea of replacing the inaccessible exact esti-
mator by a simple neural system was initially proposed by Haykin in [10]
and successively exploited, in an adaptive form, by Fiori in [5, 7]. In blind
separation, the same idea, which may be referred to as ‘source adaptivity’,
was exploited by many authors (see, for instance, [6, 8, 13]).

In particular, in our previous contributions [5, 7], we suggested to re-
gard the neural approximator as a parametric estimator, whose free param-
eters may be adapted on the basis of the same optimization principle that
drives the deconvolving/separating signal-processing structure. Namely, we
suggested to consider the cost function that drives the signal processing
structure as a function of the estimator’s parameters, too.

Good results have been obtained with the corresponding algorithms de-
signed in this way [5, 7]. However, a detailed investigation of the consistency
of the proposed estimation strategy was never carried out before. In par-
ticular, some issues such as existence and uniqueness of optimal estimator
parameters did not find appropriate investigation in the previous contribu-
tions.

The aim of this paper is to present recent formal results on the mentioned
theoretical questions.

2 Generality

In Bussgang filtering, the following framework is considered. In the linear
model, the input-output transmission system description writes:

y(t) = cT s(t) + N (t) , (1)

where s(t) is a vector containing zero-mean time-shifted input samples and
c is the system’s impulse response vector. Also, t indicates discrete time,
and N (t) denotes zero-mean additive channel noise that may originate from
many simultaneous effects [12], as cross-talk and sampling errors. Since
both source signal and channel noise are unobservable, they cannot be dis-
tinguished, thus usually the latter is ignored in the theoretical developments
[10]; also, usually the need for blind deconvolution arises from severe inter-
symbol interference (ISI) and not from additive noise, thus the effect of noise
on the algorithms and their performances is usually small [2].

A linear equalizer described by its impulse response w deconvolves s(t)
if it cancels the effects produced by the system on the source signal. De-
noting by y(t) the vector containing time-shifted observed samples y(t), the



equation describing the inverse discrete-time filter output x(t) reads:

x(t) = wT (t)y(t) . (2)

In a noiseless situation, perfect equalization would imply x(t) = cs(t −
∆), where c is a scaling factor and ∆ represents the total group-delay of
the channel-filter cascade. During filter adaptation, the non-null quantity
x(t)−cs(t−∆) may be thought of as an infinitely long linear combination of
independent source random variables and, in virtue of central limit theorem
of statistics, it may be well-represented as a Gaussian random process n(t)
termed deconvolution noise [2, 10]. Formally:

x(t) = cs(t − ∆) + n(t) . (3)

The noise n(t) is zero-mean, incorrelated with the source signal and com-
pletely characterized by its (time-dependent) variance [10].

From filter output signal model (3) we can imagine a way to get an esti-
mate of the source sequence s(t) from x(t) by means of a Bayesian estimator.
In fact, (3) is a deterministic model but for the deconvolution noise, thus
the above question gives rise to a classical estimation problem. Motivated
from simplicity and robustness, a memoryless estimator was suggested in [2].
Likely, the estimator will depend upon the inverse filter response through
the probability density function (pdf) of the source and on the level of con-
volutional noise. In symbols we write:

ŝ(t − ∆) = b(x(t)) . (4)

The main question is now how to select an appropriate estimator. The
answer comes from Bayesian estimation theory (complete details on this are
give in [5, 7]). For a wide noise power range a suitable approximation of the
actual Bayesian estimator is the bilateral ‘sigmoidal’ function:

b̂(x) =
a

c
tanh(λx) , (5)

with a and λ being properly chosen parameters [10].
On the basis of the available estimator, in [2] an error criterion like:

U(w) =
1
2
Ex

[
(cb(x) − x)2

]
(6)

was proposed. The function b(x) provides an estimate of the source signal,
so the optimal deconvolving filter w? minimizes U because it assumes its
lowest values when x = wT

? y ≈ cs.
In [10] a pair of values for a and λ is obtained by fitting the expression (5)

with the actual estimator for a given convolutional distortion level. Anyway,
it is clear that as an optimal constant value for the convolutional noise



variance cannot be found, a suitable pair of constant parameters a and λ
cannot be determined, too.

In order to overcome this problem, we proposed to adapt a and λ through
time by means of a gradient steepest descent algorithm applied to U (thought
of as a function of a, λ and x). The optimal values of these parameters find
by: 


∂U
∂a = IEx

[
(cb̂(x) − x) cb̂(x)

a

]
= 0 ,

∂U
∂λ = IEx

[
(cb̂(x) − x){a2 − c2b̂2(x)}x

a

]
= 0 .

(7)

Straightforward computations lead to the mean-field equilibrium conditions
for the learning equations (7):{

IEs[a2 tanh2(λx) − ax tanh(λx)] = 0 ,
IEs[(a tanh(λx) − x)(1 − tanh2(λx))x] = 0 ,

(8)

with x = cs. Also, the residual Bussgang cost function for x = cs, denoted
as UR, reads:

UR(a, λ) =
a2

2
IEs[tanh2(cλs)] +

c2

2
IEs[s2] − acIEs[s tanh(cλs)] . (9)

The residual cost function UR(a, λ) represents the minimal possible deconvo-
lution noise power value attainable by the deconvolution algorithm when the
neural approximated Bayesian estimator is endowed with the parameters’
values a and λ. Consequently, the residual cost function may be advanta-
geously used in order to select the values of these parameters that grant
minimal distortion after filter updating.

The shape of the neural Bayesian estimator depends on the probability
density function of the source signals, therefore the analyses which were
carried out focus on some density function models.

3 Three cases-study

In the following sections, a uniformly-distributed source, a binary source and
a source endowed with Laplacean distributions are examined. The common
Gaussian distribution was avoided because it is not considered in blind signal
processing because it might violate certain identifiability conditions (see e.g.
[1]). The uniform and the binary distributions were considered because
they are common in telecommunications, while the Laplacean distribution
was considered because it (roughly) represents the distribution of values
of speech signals. The self-consistency of cost functions for blind signal
processing based on the neural Bayesian estimators in the above-mentioned
cases has been investigated. As an interesting result, it turns readily out
that the analysis of cost-function optimum can be investigated through two
macro-variables that parameterize the equations.



3.1 Case I: Uniformly-distributed source signal

Here we consider a uniformly distributed source signal, namely with:

ps(s) =
H(s + s0) − H(s − s0)

2s0
, (10)

where H(·) denotes the Heaviside (unit-step) function and [−s0,+s0] denotes
the support of the distribution (s0 > 0). The computation of the terms
involved in the equations (8) is simplified by the following positions:

Γdef= cλs0 , Th,k(u)def=
∫ u

0
zh tanhk(z)dz . (11)

The first term involved in equations (8) expresses as:

IEs[a2 tanh2(λx)] =
1

2s0

∫ +s0

−s0

a2 tanh2(λcs)ds

(with the variable change σ
def=λcs) = a2

∫ Γ

0
tanh2(σ)

dσ

Γ

=
a2

Γ
T0,2(Γ) .

The other terms may be computed in a similar way and prove to be:

IEs[ax tanh(λx)] =
acs0

Γ2
T1,1(Γ) ,

IEs[ax tanh3(λx)] =
acs0

Γ2
T1,3(Γ) ,

IEs[x2] =
c2s2

0

3
,

IEs[x2 tanh2(λx)] =
c2s2

0

Γ3
T2,2(Γ) .

Plugging these expressions into the equations (8) yields:{
a2

Γ T0,2(Γ) − acs0
Γ2 T1,1(Γ) = 0 ,

acs0
Γ2 T1,1(Γ) − acs0

Γ2 T1,3(Γ) − c2s2
0

3 + c2s2
0

Γ3 T2,2(Γ) = 0 .
(12)

Let us multiply both members of both equations by λ2 and define Λdef=aλ.
In the hypothesis that Λ 6= 0 and Γ 6= 0, the above system of equations may
be recast into:{

ΛT0,2(Γ) − T1,1(Γ) = 0 ,
3Λ(T1,1(Γ) − T1,3(Γ)) − 3T2,2(Γ) + Γ3 = 0 .

(13)

Let us now discuss the relationships among the functions Th,k(u) that
help understanding the calculations indicated in the above system of non-
linear equations.



The function T1,1(u) appears to play the role of a basis function for the
family Th,k(u). In fact, it cannot be integrated in closed form, while some
mathematical work show that:

T0,2(u) = u − tanh(u) , (14)

T1,3(u) = T1,1(u) +
sech2(u)(2u − sinh(2u))

4
, (15)

T2,2(u) = 2T1,1(u) +
u3

3
− u2 tanh(u) , (16)

therefore T1,1(u) only needs to be integrated numerically, while T1,3(u) and
T2,2(u) may be evaluated in terms of T1,1(u) and of elementary and hyper-
bolic functions. A graphical representation of the four considered functions
Th,k(u) is given in the Figure 1.
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Figure 1: Graphical representation of the four considered functions Th,k(·).

The residual cost function, in this case, has the structure:

λ2UR =
Λ2

2Γ
T0,2(Γ) +

Γ2

6
− Λ

Γ
T1,1(Γ) . (17)

The (13) represents a system of two non-linear equations in the two
unknowns Γ and Λ that may be solved graphically. In particular, what can



be done is to make explicit the variable Λ as a function of Γ from the first
equation, let us say Λ1 = Λ1(Γ) and the same may be done with the second
equation, by constructing the solution Λ2 = Λ2(Γ). The solutions Λ of the
system are the common values Λ1 = Λ2 – and the corresponding values of
Γ – that may be found numerically.

−1 0 1
1

1.05

1.1

1.15

Γ

Λ 1 an
d Λ

2

−1 0 1
0

1

2

3

4

5

6

7

8

9
x 10

−3

Γ

|Λ 1−Λ 2|

1

1.1

1.2

−1
0

1

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x 10
−3

ΛΓ
λ2 *U R

Figure 2: Graphical representation of the functions Λ1 = Λ1(Γ) (solid-line)
and Λ2 = Λ2(Γ) (dashed-line), of their absolute deviation, and of the residual
cost as a function of Λ and Γ for the uniformly-distributed source-signal case.

As can be seen from the Figure 2, the only point in which the two curves
meet is the origin, that should be excluded, however, the difference-curve
|Λ1 −Λ2| is very flat for a large interval of values of Γ, therefore there exist
many possible values for the pair Λ and Γ that grant a practically optimal
residual cost function, as also testified by the shape of the residual cost
function, represented in the Figure 2, that appear to be flat for a relatively
large portions of the Λ—Γ plane.

3.2 Case II: Binary source signal

In the present section it is considered a (symmetric) binary source signal,
namely with:

ps(s) =
δ(s + s0) + δ(s − s0)

2
, (18)

where the symbol δ(·) denotes the Dirac’s delta and the values −s0 and +s0

denote the only values in the distribution.
The computation of the terms involved in the equations (8) is simplified

by the position Γdef= cλs0. The first term involved in equations (8) expresses
as:

IEs[a2 tanh2(λx)] =
1
2

∫ ∞

−∞
a2 tanh2(λcs)[δ(s + s0) + δ(s − s0)]ds

=
a2

2
[tanh2(λcs0) + tanh2(−λcs0)]



= a2 tanh2(Γ) .

The other terms may be computed accordingly and write:

IEs[ax tanh(λx)] = acs0 tanh(Γ) ,

IEs[ax tanh3(λx)] = acs0 tanh3(Γ) ,

IEs[x2] = c2s2
0 ,

IEs[x2 tanh2(λx)] = c2s2
0 tanh2(Γ) .

Plugging these expressions into the equations (8) yields:
{

a2

Γ T0,2(Γ) − acs0
Γ2 T1,1(Γ) = 0 ,

acs0
Γ2 T1,1(Γ) − acs0

Γ2 T1,3(Γ) − c2s2
0

3 + c2s2
0

Γ3 T2,2(Γ) = 0 .
(19)

Let us again multiply both sides of both equations by λ2 and define Λdef=aλ.
In the hypothesis that Λ 6= 0 and Γ 6= 0, the above system of equations may
be recast into:{

Λ2 tanh2(Γ) − ΛΓ tanh(Γ) = 0 ,
ΛΓ tanh(Γ) − ΛΓ tanh3(Γ) − Γ2 + Γ2 tanh2(Γ) = 0 .

(20)

Straightforward computations show that the above equations are not inde-
pendent: In fact, they both represent the following, simple, relationship:

Λ tanh(Γ) = Γ , (21)

The residual cost function, in the present case, is easily proven to be iden-
tically equal to zero.

The fact that, for the symmetric binary case, the two non-linear optimal
equations reduce to a single relationship means that there exist infinitely
many pairs of values of Γ and Λ that satisfy the optimality conditions. Such
pairs lie on the curve illustrated in the Fugure 3.

3.3 Case III: Source signal with Laplacean distribution

To end with, we consider a Laplacean distribution, that is useful in modeling
human speech signals [9], namely:

ps(s) =
ρ

2
e−ρ|s| , (22)

where ρ > 0 denotes the Laplacean dispersion parameter. The computation
of the terms involved in the equations (8) is simplified by the following
positions:

Γdef=
cλ

ρ
, Bh,k(u)def=

∫ +∞

0
zh tanhk(uz)e−zdz . (23)
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Figure 3: Graphical representation of the function (21).

Thanks to the above positions, the first term involved in equations (8) ex-
presses as:

IEs[a2 tanh2(λx)] =
a2ρ

2

∫ +∞

−∞
tanh2(λcs)e−ρ|s|ds

(with the variable change σ
def=ρs) = a2

∫ +∞

0
tanh2(Γσ)e−σdσ ,

= a2B0,2(Γ) .

The remaining terms may be computed in a similar way and are found to
be:

IEs[ax tanh(λx)] =
ac

ρ
B1,1(Γ) ,

IEs[ax tanh3(λx)] =
ac

ρ
B1,3(Γ) ,

IEs[x2] =
2c2

ρ2
,

IEs[x2 tanh2(λx)] =
c2

ρ2
B2,2(Γ) .

Plugging these expressions into the equations (8) yields:
{

a2B0,2(Γ) − ac
ρ B1,1(Γ) = 0 ,

ac
ρ B1,1(Γ) − ac

ρ B1,3(Γ) − 2c2

ρ2 + 2c2

ρ2 B2,2(Γ) = 0 .
(24)



By multiplying every terms of both equations by λ2, defining Λdef=aλ and
hypothesizing that Γ 6= 0 and Λ 6= 0, the above system of equations may be
recast into: {

ΛB0,2(Γ) − ΓB1,1(Γ) = 0 ,
Λ(B1,1(Γ) − B1,3(Γ)) + ΓB2,2(Γ) − 2Γ = 0 .

(25)

There appear to be no closed-from expressions for the integral quantities
Bh,k(u), that need therefore to be evaluated numerically. It is worth not-
ing that the chosen form of the integrand contains the function zhe−z that
decreases to zero rather rapidly for 0 ≤ h ≤ 2, and a hyperbolic term that
is absolutely bounded by the unity. A graphical representation of the four
considered functions Bh,k(u) is given in the Figure 4.
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Figure 4: Graphical representation of the four considered functions Bh,k(·).

The residual cost function, in this last case, possesses the structure:

λ2UR =
Λ2

2
B0,2(Γ) + Γ2 − ΛΓB1,1(Γ) . (26)

The (25) represents again a system of two non-linear equations in the
two unknows Γ and Λ that may be solved numerically. By making again



explicit from the first equation the solution Λ1 = Λ1(Γ) and from the second
equation the solution Λ2 = Λ2(Γ), the solutions Λ of the system are the
common values Λ1 = Λ2 that may be found numerically.
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Figure 5: Graphycal representation of the functions Λ1 = Λ1(Γ) (solid-line)
and Λ2 = Λ2(Γ) (dashed-line), of their absolute deviation, and of the residual
cost as a function of Λ and Γ for the Laplacean source-signal case.

As can be seen from the Figure 5, there exist two non-null points in which
the two curves meet. However, again in practice there exist many possible
values for the pair Λ and Γ that grant a practically optimal residual cost
function, as testified by the shape of the residual cost function, represented
in the Figure 5, that look nearly flat for a relatively large portion of the
Λ—Γ plane.

4 Conclusion

The aim of this report was to elucidate the structure of the cost function for
the Bussgang technique in blind signal processing, with the aim of optimiz-
ing the parameters of the neural approximated Bayesian estimator that the
algorithm is equipped with. The analysis is conditioned by the statistical
distribution of the source signal values, thus some possible distributions have
been considered. The results of the analysis showed that in the binary case
it is always possible to find parameters values that theoretically grant null
residual interference, while for the uniform distribution and the Laplacean
distribution it is, in practice, possible to find parameters values that grant
a very low residual interference after filter adaptation.
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