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Abstract The present paper introduces a new statis-

tical data-modeling algorithm based on artificial neu-

ral systems. This procedure allows abstracting from

datasets by working on their probability density func-

tions. The proposed method strives to capture the over-

all structure of the analyzed data, exhibits competitive

computational runtimes and may be applied to non-

monotonic real-world data (building on a previously

developed isotonic neural modeling algorithm). An out-

standing feature of the proposed method is the ability

to return a smoother model compared to other model-

ing algorithms. Smooth models could have applications

in the fields of engineering and computer science. In

fact, the present research was motivated by an image-

contour resampling problem that arises in shape anal-

ysis. The features of the proposed algorithm are illus-

trated and compared to the features of existing algo-

rithms by means of numerical tests on shape resam-

pling.
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1 Introduction

A large number of data processing systems deal with

non-linear data modeling. In particular, bivariate data

modeling aims at (approximately) inferring the com-

plex relationship between a single independent variable

X ∈ R and a single dependent variable Y ∈ R [30]. In

the present contibution, we are dealing with bivariate

regression as an instance of bivariate data modeling.

A good deal of research has been devoted to modeling

such non-linear relationships by neural networks and
systems [31]. A number of applications in engineering

and computer science deal with nonlinear data mod-

eling by artificial intelligence techniques. Examples of

these research efforts published over the past few years

are a work on modeling of seed spacing uniformity of a

pneumatic planter [1], a work on neural network mod-

eling of deformations in masonry structures [6], a work

on predicting heat fluxes and evapo-transpiration [8],

a work on crop yield modeling and forecasting [17], a

work on credit rating modeling [18], a research on wa-

ter quality prediction [25], a research on the estimation

of melting points of fatty acids [27], a work on surface

roughness prediction [28], and a research on forecasingt

electricity prices [29].

Traditional nonlinear modeling techniques are based

on a non-linear model endowed with a number of tun-

able parameters that are adapted in order to minimize

the misfit between the predicted model’s outcome and

the actual observations. Neural-network-based nonlin-

ear regression is based on the same principle, except
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that the non-linear functional model is not specifically

tailored to the underlying data but is a generic neu-

ral network structure, such as a Multi-Layer Percep-

tron (MLP, see, for example, the comparison presented

in [37] between linear, polynomial, log reciprocal, von

Bertalanffy, Gompertz, logistic and exponential models

and an artificial neural network method) or a General

Regression Neural Network (GRNN) [32] (see also [33]

for a comparison between neural networks and decision

trees in nonlinear regression).

A specific modeling problem arises when the un-

derlying relationship between the dependent variable

and the independent variable is known to be mono-

tonic. Such problem possesses a specific solution known

as isotonic modeling [2]. In particular, the first au-

thor proposed in the contribution [11] a statistical iso-

tonic modeling algorithm based on Look-up Table Neu-

ral Systems (LUTs). LUT-based artificial neural net-

works are often invoked in the literature when it is

necessary to implement non-linear activation functions

efficiently (see, for example, the application to real-

time neural-network inversion described in [5]). A LUT-

based neural network is a weightless, flexible neural

model whose non-linear activation function is not fixed

a priori (e.g., it is not fixed as a sigmoidal activation

function). The non-linear activation function is rather

learnt from the training set by means of a learning rule

tailored to the task at hand. The non-linear activation

function is represented as a look-up table whose en-

tries are modified according to a learning rule. A bi-

variate N -size look-up table is essentially a set of pairs

{(xi, yi) | i = 1, 2, . . . , N} together with a set of

(simple) mathematical operators. For a general survey,

readers might consult, e.g., the book [19], while spe-

cific surveys on LUT-based neural networks in the con-

text of signal processing and data processing may be

found within the neural-network and neural-computing

papers [10,11,22]. An interesting application of LUTs

to implement efficient artificial neural networks may be

found in the academic thesis [35].

A limiting drawback of the modeling method dis-

cussed in [11] is that it is capable of capturing only

monotonic relations. Non-monotonic relationships be-

tween two variables are encountered when the depen-

dent variable is not consistently increasing and never

decreasing or consistently decreasing and never increas-

ing in value but takes a non-linear trend. An exam-

ple of non-monotonic behavior, with important conse-

quences on toxicological risk assessment, may be found

in the reactions of a complex biological system to a tox-

icant, where biphasic dose-effect relationships can be

observed, showing a decrease at low doses followed by

an increase at high doses [3]. Another well-known exam-

ple of a real-world system exhibiting a non-monotonic

relationship between two variables is the tunnel diode

(or Esaki diode), whose voltage-current characteristics

look markedly nonlinear and non-monotonic [7].

Isotonic modeling has been generalized in differ-

ent ways in the recent past (see, for instance, the

contributions [4,14,23,34,36]). The present paper aims

at extending the statistical isotonic modeling method

presented in the paper [11] to model non-monotonic

datasets.

The present research was motivated, in particular,

by an image-contour resampling problem that arises in

the pre-processing of contours in shape analysis, as ex-

plained in [20]. Resampling a contour for image classi-

fication purposes is a specific data-processing problem

where it is more essential for the resampled contour to

be smooth than to be precisely close to the original con-

tour, for at least two reasons. A first reason is that a

shape-contour dataset arising from an acquired image

may be noisy, and a very precise model will incorporate

the unwanted noise, while a smooth model will filter out

the noise components. A second reason is that, as far as

the estimation of the local curvature of a shape-contour

is concerned, smooth resampling is necessary to allow

computing first-order derivatives with little hassles (for

a numerical example of curvature estimation, see the

Experiment 2 in Subsection 4.2).

The present paper is organized as follows. Sec-

tion 2 summarizes previous contributions by the first

author and coworkers, published in the papers [11,14],

that the present endeavor is based on. Section 3 ex-

plains the transformation principle used to turn a non-

monotonic dataset into a monotonic one and illustrates

the whole non-linear regression procedure by pseudo-

coding. Section 4 illustrates the capabilities of the de-

vised neural regression technique by numerical tests on

a shape-resampling problem. Section 5 concludes the

manuscript.

2 Previous contributions

The first author contributed to the problem of sta-

tistical isotonic regression by a method published in

the paper [11], which is summarized, for the benefit of

the readers, in the Subsection 2.1. Such method was

later extended to statistical non-isotonic regression in

[14]. The present paper also deals with statistical non-

isotonic regression by means of a novel algorithm, whose

computational complexity will be compared (see Sub-

section 4.1) to the computational burden exhibited by

the neural algorithms proposed in [14], which are sum-

marized in Subsection 2.2.
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2.1 Statistical isotonic regression [11]

Let us assume that we want to model a bivariate dataset

D = {(xi, yi) ∈ R2 | i = 1, 2, 3, . . . , N} and that the

relationship between the samples xi and the samples

yi is monotonic. (For example, if the relationship be-

tween the samples xi and the samples yi is monoton-

ically increasing, we know that xj > xi implies that

yj > yi). Let us denote the model underlying the data

by f : R → R and take this model to be monotoni-

cally increasing (namely, df/dx > 0) or monotonically

decreasing (namely, df/dx < 0).

A first noteworthy feature of the algorithm pro-

posed in [11] is that such method does not insist on

the data to be modeled but on their statistical distri-

butions. Namely, denoting by xi the samples of the in-

dependent variable and by yi the samples of the depen-

dent variable, which are realizations of the random vari-

ables X and Y , respectively, the algorithm proposed in

[11] does not make direct use of the samples xi, yi but

of the probability density functions pX(x) and pY (y),

that are estimated through the method of occurrence

histograms. As a consequence, while traditional data-

modeling techniques try to fit a pre-defined model to

the available data, the statistical modeling technique

matches their statistical distributions by means of a

nonlinear transform: a model of the data (see, for ex-

ample, the large ensemble of numerical experiments on

real-world, noisy data sets, including nuisance variables,

presented in [12].)

A second important feature of the statistical isotonic

modeling method proposed in [11] is that the model may

be expressed in closed form. Namely, upon defining the

following cumulative distribution functions:

PX(x) =

∫ x

−∞
pX(x)dx, PY (y) =

∫ y

−∞
pY (y)dy, (1)

the statistical isotonic model of the dataset D may be

written as:

f(x) =

{
P−1Y (PX(x)) monot. increasing relation,

P−1Y (1− PX(x)) monot. decreasing relation,

(2)

where the symbol P−1Y denotes the inverse of the func-

tion PY , that exists as long as pY (y) 6= 0.

A third, distinguishing feature of the statistical

isotonic modeling method being recalled is that the

involved nonlinear functions are represented through

Look-up Table neural systems, which make the required

numerical operations (including inverting the cumula-

tive distribution function PY ) be computationally light

and the whole modeling procedure fast to execute. In

addition, since such modeling method does not involve

any parameter to tune nor any basis functions to be

selected in advance, the produced bivariate model is

flexible and may follow the shape of a broad class of un-

derlying relationships, which may present, for instance,

abrupt changes.

For more technical details, readers might consult the

paper [11].

2.2 Non-isotonic statistical regression [14]

Let us consider, now, datasets that do not present a

monotonic trend (namely, even if xj > xi, it could

happen that yj > yi or yj < yi or even yj = yi).

Consequently, the model f may take any local curva-

ture, namely, its first-order derivative df/dx R 0. For

such kinds of datasets, it is impossible to apply the

neural statistical modeling method proposed in [11],

which is based on the assumption that the model ex-

hibits a strict monotonic (either increasing or decreas-

ing) shape.

In the recent publication [14], an idea was ex-

plored that allows a neural isotonic modeling proce-

dure to be applied to non-monotonic datasets, based

on a three-stage neural system. The key idea is that

non-monotonic data can be transformed to monotonic

data by an invertible transform. After such transfor-

mation, neural isotonic regression may be applied to

the monotonized training set and the regression result

may be transformed back to its non-monotonic form.

The non-linear transform, that makes non-monotonic

data approximately monotonic, will be implemented by

a learnable LUT neural system.

The Figure 1 illustrates this neural system that is

based on the following sequence of operations: 1) mod-

ify the original non-monotonic dataset through a non-

linear, invertible transformation that makes it mono-

tonic. Such non-linear transform is to be learned from

the original data; 2) apply the neural statistical isotonic

procedure to the ‘monotonized’ dataset; 3) bring back

the model to its original domain by applying the inverse

non-linear transform.

As a first stage, in order to make an isotonic mod-

eling procedure be able to cope with such a non-

monotonic relationship, it is necessary to transform the

model f into a monotonic model h = Γ (f) by means

of a transformation Γ such that dh/dx > 0, strictly. In

the earlier contribution [14], a multiplicative non-linear

transform (implemented by a learnable LUT neural net-

work) was invoked, which takes the form

Γ (f(x)) = g(x)[f(x) + κ],

where the function g : R → R and the constant κ ∈ R
need to be learned from the dataset D. Such nonlin-
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Data

Model

(Lifting upward)

Isotonic statistical modeling

(Lifting downward)

Direct monotonization transform

Inverse monotonization transform

(xi, yi)

(xi, zi)

(x̂i, ẑi)

(x̂i, ŷi)

Fig. 1 Three-stage neural system that allows modeling a non-
monotonic dataset by means of an isotonic data-modeling al-
gorithm. The three stages, represented by rectangular boxes,
are all non-linear in the formulation proposed in [14], while
they are, respectively, linear, non-linear and linear in the
present proposal (the linear stages are denoted in parenthe-
ses and the input/output data-samples are indicated in each
stage).

ear transform works effectively but, being dependent of

the data, it might be cumbersome to learn and its per-

formances vary from dataset to dataset (see the large

ensemble of numerical experiments presented in [14]).

Because of the non-linearity of the data-transform neu-

ral system, such three-stage procedure may be defined

as ‘nonlinear-nonlinear-nonlinear’.

The transfer function of the neural data-

monotonization system reads h(x) = g(x)f̄(x),

where f̄(x) denotes the model-function f(x) lifted

upward in such a way that f̄(x) > 0 for every value of

the variable x. The neural transfer function g is termed

multiplicative transform function. The monotonicity

condition on the function h(x) can be written as:

dh

dx
=
dg

dx
f̄ + g

df̄

dx
> 0, (3)

and is enforced by means of an appropriate learning

rule for the neural system. The paper [14] proposed

three learning rules to infer a transfer function, which

we summarize below to give a general review:

– Learning rule 1 : It is based on data pre-smoothing

by a Gaussian kernel denoted by k : R → R, on

the pre-estimation of the model and on the learning

of the multiplicative transform function. In order

to write a rule that allows learning the multiplica-

tive transform function, the range of the variable

x is subdivided into n equally-spaced sections of

width ∆ = (xmax − xmin)/n, and a new set of n

grid points {ζ0, ζ1, . . . , ζλ, . . . , ζn} is generated,

where ζλ = x0 +λ∆, with λ = 1, . . . , n. Each value

k(ζλ) is calculated by cubic spline interpolation so

that the derivative function k′(x) = dk/dx can be

numerically approximated over the grid-points ζλ.

Each value g(ζλ) is calculated by estimating g′(ζλ)

over the grid points by:

g(ζλ) = ∆g′(ζλ−1) + g(ζλ−1), (4)

g′(ζλ) = −k
′(ζλ)

k(ζλ)
g(ζλ) + ε1, (5)

where the boundary condition is set to g(x0) = 1

and ε1 > 0 is a parameter of the learning rule. The

values g(xi) of the neural transfer function are cal-

culated from the values g(ζλ) by interpolation. The

original dataset D = {(xi, yi) | i = 1, 2, . . . , N}
is transformed to be a monotonically increasing

dataset {(xi, zi) | i = 1, 2, . . . , N}, with zi =

g(xi) ȳi, where ȳi denotes the lifted-upward version

of the data yi such that all ȳi > 0. Isotonic regres-

sion is then applied to the transformed dataset made

of the pairs (xi, zi).

– Learning rule 2 : It allows learning a neural trans-

fer function by a multiplicative update rule. As op-

posed to the previous learning method, the multi-

plicative transform function g is learnt directly from

the training set without any smoothing nor pre-

estimation. The first step consists again in shifting

upwards the training set in order to ensure that the

y-samples be positive-valued. Let ȳi = yi + γ, such

that ȳi > 0 holds for every value of the index i

and let us set f̄(xi) = ȳi. Let us set, for the sake

of notation conciseness, gi = g(xi). To learn the

value gi of the look-up table that represents the non-

linear transfer function of the multiplicative trans-

form neural system, let us set g1 = 1, and let the
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system learn the next values through the recursive

rule:

gi = M
gi−1ȳi

2ȳi − ȳi−1
, (6)

with M > 1. The above neural learning rule is well-

defined as long as the ȳ-data satisfy the condition

2ȳi − ȳi−1 6= 0 for every value of the index i, which

may be ensured by shifting the data upward some

further. The original dataset D is transformed to be

a monotonically increasing dataset {(xi, zi) | i =

1, 2, . . . , N}, with zi = gi ȳi. Isotonic regression

is then applied to the transformed dataset made of

the pairs (xi, zi).

– Learning rule 3 : It allows learning a neural transfer

function by an additive rule. Instead of the mul-

tiplicative update rule (6), the following additive

learning rule was proposed:

gi =
gi−1ȳi

2ȳi − ȳi−1
+ ε2. (7)

The constant ε2 > 0 is set to a low value. Again, the

original dataset D is transformed to be a monotoni-

cally increasing dataset {(xi, zi) | i = 1, 2, . . . , N},
with zi = gi ȳi, and isotonic regression is applied to

the transformed dataset (xi, zi).

For further implementation details about the above

three learning rules and for a detailed discussion about

their features and drawbacks, we refers the readers to

the paper [14].

As an interesting introduction to the topic of data-

trasformation, we mention the contribution [24]. Such

paper explains that transforming a dataset is tradition-

ally considered difficult because of the need to guess a

non-linear transformation of the data out of experience.

Moreover, such paper discusses how nonlinear modeling

differs from traditional approaches such as polynomial

regression and cubic spline. We would also like to men-

tion a review of a closely-related topic, namely, mono-

tonic classification [21], that makes use of data mono-

tonization, although the meaning of ‘monotonization’,

and the way to achieve it, are quite different from those

discussed in the present contribution.

3 Novel data transformation principle and

implementation details

Compared to the previous contribution [14], the present

paper explores a much simpler data transformation

rule, namely:

h(x) = Γ (f(x)) = f(x) + c x, (8)

with c ∈ R denoting an appropriately chosen constant.

The requirement that h′(x) > 0 can be met under the

assumption that the first order derivative of the model

f be absolutely bounded. In fact, to ensure a monotonic

behavior of the model, it is sufficient to take:

c > max
x

{
−df(x)

dx

}
. (9)

Thanks to the linearity of the data-transform (8), the

resulting three-stage modeling procedure may be de-

fined as ‘linear-nonlinear-linear’. In real-world applica-

tions, the model f is unknown, hence the exact relation-

ship (9) needs to be implemented data-wise, namely,

the dataset D, made of N sample-pairs, needs to be

transformed into the dataset D` = {(xi, zi) ∈ R2 | i =

1, 2, 3, . . . , N}, with

zi = yi + c xi, with c > max
i

{
yi−1 − yi
xi − xi−1

}
, (10)

where the superscript ` stands for ‘lifted’. Without loss

of generality, it is assumed that all the samples xi are

distinct from each other. If, however, there exist multi-

ple records with an identical xi-value, low-valued ran-

dom displacements may be added to the x-value of

those records, in such a way that those records may

be sorted [14].

Once the isotonic statistical modeling procedure has

returned a (lifted) neural model M` = {(x̂i, ẑi) ∈ R2 |
i = 1, 2, 3, . . . , R} over a grid of R points-of-interest

x̂i, the obtained model will be shifted downwards to its

original domain by the rule

ŷi = ẑi − c x̂i, (11)

to give the LUT-based neural model M = {(x̂i, ŷi) ∈
R2 | i = 1, 2, 3, . . . , R}.

Depending on the relationship between the number

of available data-pairs N and the number R of model-

points in the neural LUT, the following cases arise:

– Case R < N : The model constitutes a downsam-

pling/decimation of the original dataset;

– Case R = N : The model constitutes a uniform1

resampling of the original dataset;

– Case R > N : The model constitutes an interpola-

tion of the original dataset.

By means of the dataset transform rule (8) and the

isotonic statistical modeling procedure devised in [11],

1 It is tacitly assumed that, while the points in the dataset
D generally are not evenly spaced, the resampled coordinate
x̂ is evenly spaced in M, although such an assumption is
not strictly necessary for the discussed modeling algorithm
to work.



6 Simone Fiori, Nicola Fioranelli

it is possible to implement a statistical modeling proce-

dure for non-monotonic relationships. The Algorithm 1

lists a pseudo-code implementation of the whole mod-

eling procedure. Such pseudo-code is based on high-

level functions summarized in the Table 1. A MATLAB-

based code is attached as Appendix A.

It is worth underlining that switching from a

monotonic dependency to a non-monotonic dependency

causes the loss of some interesting features of the neu-

ral algorithm developed in [11]. In particular, we refer

explicitly to the following facts:

– The relationship between monotonic datasets may

be recovered even when there are incomplete data

in the dataset as, for instance, incomplete records of

the type (·, yi). The existence of missing records in a

dataset is not uncommon. This happens, for exam-

ple, when readouts in a sensor network become tem-

porarily unavailable due to communication loss or

signal corruption [26]. Conversely, modeling a non-

monotonic relationship requires complete datasets

and no missing data may be handled in the context

of non-isotonic modeling.

– The relationship between monotonic data may be

recovered in the presence of a random reshuffling of

the data-records. For example, a bivariate dataset

{(xi, yi)|i = 1, 2, . . . , N}may come under the form

of two unpaired datasets {xi|i = 1, 2, . . . , N} and

{yj |j = 1, 2, . . . , N}, where there is no known pair-

ing between each sample xi and yj . This situation is

also not uncommon in applications (see, for exam-

ple, a problem arising in medical statistics described

in [15]). A neural statistical isotonic modeling algo-

rithm is able to infer the relationship underlying

unpaired samples. As opposed to that, modeling a

non-monotonic relationship requires a correct pair-

ing of the data-records.

The proposed statistical modeling technique ex-

hibits a number of distinguishing features. While the

data pre-processing technique is data-driven, the un-

derlying modeling method does not make direct use of

the samples in the dataset as it is based on the ex-

traction of collective information from the data; as a

consequence, the model does not fit directly the data

samples (which may be unreliable due to measurement

errors or other hidden/nuisance variables) and results

unfaithful in a mean-squared-error sense. The modeling

procedure strives to capture the overall structure of the

underlying phenomenon. Moreover, the proposed pro-

cedure does not make any assumption on the shape of

the model, including monotonicity, that was the princi-

pal limitation of the previously-devised neural statisti-

cal modeling method [11]. As a result, the model may

work on a wide range of datasets and there is no need

to choose any functional dependency beforehand, in

contrast to parametric/maximum-likelihood estimation

methods. In addition, the involved probability density

functions, the inferred model and the data-transform

operator are represented by fully-learnable neural look-

up tables. The probability density functions are esti-

mated via occurrence histograms and the associated cu-

mulative distribution functions are estimated by cumu-

lative sums. The data-transform as well as the sought

non-linear model are estimated by algebraic operations

on such LUTs.

4 Numerical experiments

The present section illustrates some numerical features

of the devised neural modeling algorithm.

A preliminary experiment aims at comparing the

computational complexity of the proposed algorithm

with the complexity exhibited by three neural learn-

ing rules for data monotonization recently proposed in

[14] and summarized in the Subsection 2.2, in order to

clearly render how the novel monotonization rule re-

sults advantageous in terms of execution time.

Further numerical experiments were chosen to il-

lustrate the behavior of the devised statistical model-

ing procedure and were motivated by a contour resam-

pling/interpolation problem that arises in shape anal-

ysis (for a review, see, e.g., [20]). The chosen datasets2

are challenging and the experiments aim at illustrat-

ing objectively the merits and demerits of the proposed

neural modeling method.

4.1 Preliminary experiment on empirical complexity
evaluation

The equations describing the proposed data-

monotonization learning rule look much simpler

than the rules proposed in the previous contributions

[14], not only because the new transformation rule is

linear instead of being non-linear, but also because

the new transformation only requires the calculation

of a single parameter (the constant c). Allegedly, such

combined advantages result in lighter computations

and, hence, in shorter execution times.

In order to substantiate such argument, we com-

pared the Learning rule 1, Learning rule 2 and Learn-

ing rule 3 from [14] with the Three-stage learning rule

2 The shape-contour datasets used within the present paper
were drawn from the Surrey fish database described in http:

//www.ee.surrey.ac.uk/CVSSP/demos/css/demo.html. Unfortu-
nately, these datasets are no longer available from the server.
We can make them available to interested readers upon re-
quest.

http://www.ee.surrey.ac.uk/CVSSP/demos/css/demo.html
http://www.ee.surrey.ac.uk/CVSSP/demos/css/demo.html
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Algorithm 1 Three-stage neural modeling algorithm

1: function statmod(Sx, Sy, xx)
2: N ← lenght(Sx); . Get cardinality of data sets
3: B ← round(20 ∗ log10(N)); . Compute number of bins
4: for i← 2, N do
5: df [i]← −(Sy[i]− Sy[i− 1])/(Sx[i]− Sx[i− 1]);
6: end for

7: c← 1.01∗max(df); . Compute the lifting constant
8: for j ← 1, N do

9: Sy[j]← Sy[j] + c ∗ Sx[j]; . Lift upward the y-data
10: end for
11: [px, x]←histogram(Sx,B); . Estimate the probability density functions
12: [py, y]←histogram(Sy,B);
13: DDx← (max(Sx)−min(Sx))/B; . Compuet bins’ size
14: DDy ← (max(Sy)−min(Sy))/B;
15: px← px/N ; . Normalize the probability density functions
16: py ← (N ∗ py + 1)/(B +N ∗N);
17: Px[1]← 0; . Estimate the cumulative distribution functions
18: Py[1]← 0;
19: xsh[1]←min(Sx);
20: ysh[1]←min(Sy);
21: for k ← 2, N do
22: Px[k]← px[k − 1] + Px[k − 1];
23: xsh[k]← (x[k − 1] +DDx)/2;
24: Py[k]← py[k − 1] + Py[k − 1];
25: ysh[k]← (y[k − 1] +DDy)/2;
26: end for

27: PPx← interpolate(xsh, Px, xx); . Estimate the model
28: yysh← interpolate(Py, ysh, PPx);
29: for i← 1, N do . Shift downward the y-data
30: yy[i]← yysh[i]− c ∗ xx[i];
31: end for

32: return yy;
33: end function

Table 1 Functions used in the pseudo-coded Algorithm 1

Function name Comment
max(x) Allows to find the maximum element of a vector x.
min(x) Allows to find the minimum element of a vector x.
[counts, centers] ←
histogram(x, numbins) Sorts vector x into n bins defined by numbins. The function

returns two row vectors, counts containing the number of
elements in each bin, and centers, indicating the location
of each bin center on the x-axis.

interpolate(x, v, xq) The function return the linear interpolated values from x,
a vector of sample points, v contains the corresponding
values, vector xq contains the coordinates of the query
points.

described in Section 3. This comparison is based on

computation times by a MATLAB© 2016a computing

environment. The dataset chosen as a benchmark is the

one referred to as Data-set 2 in [14]. Such (synthetic)

dataset was chosen because it affords the generation of

as many data samples as desired. We ran the above four

monotonization/demonotonization rules on a dataset

counting an increasing number of samples, from 50 to

1000 with step 50, and recorded the execution time of

each procedure. Each test was repeated 10 times on in-

dependent datasets and the recorded execution times

were averaged to get rid of random fluctuations.

The result of such numerical analysis is displayed

in the Figure 2. The top panel compares the execu-

tion times pertaining to the first (data monotoniza-

tion) stage as required by the code to run. The bot-

tom panel compares the execution times pertaining to

the third (data de-monotonization) stage. Both stages

(especially the third) of the novel method appear much

quicker (i.e., computationally lighter) compared to the

corresponding stages of the previously-proposed meth-
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ods. In fact, the time-complexity of the last stage in

the previous versions is around 10−4 seconds, while the

time-complexity of the last stage in the current version

is around 10−6 seconds, which is 2 orders of magnitude

smaller.
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Fig. 2 Numerical comparison of the Learning rule 1, Learn-

ing rule 2 and Learning rule 3 from [14] with the Three-stage
learning rule. Top panel: Monotonization stage. Bottom panel:
De-monotonization stage.

The time-complexity comparison may be paired

with a space-complexity evaluation. The equations de-

scribing the proposed data-monotonization learning

rule look much simpler than the rules proposed in the

previous contributions [14], because:

– The new transformation rule is linear, while the pre-

vious one is non-linear,

– The new transformation only requires learning a

single parameter (the constant c) instead of learn-

ing a whole neural activation function (denoted by

g in the summary presented in the Subsection 2.2).

The constant c is a scalar, whereas the function g(x)

needs to be evaluated at every point of the model. In

terms of spatial complexity, the proposed monotonicity

transform requires to store a single value in memory,

while the previous methods [14] require to store an ar-

ray of N elements, with N denoting again the cardinal-

ity of the dataset.

4.2 Experiments on a single contour resampling

The original dataset of interest consists of a set of pairs

S = {(ξ̄i, η̄i) | i = 1, . . . , N}, each of which represents

the coordinates of a point on a bi-dimensional contour

(illustrated, for example, in the right-hand panel of Fig-

ure 3 in red color).

Since the points are not sampled uniformly along

the contour, a coordinate si ∈ [0, 1], hereafter termed

curvilinear coordinate, was calculated on the basis of

the available data. The curvilinear coordinate is a com-

mon coordinate system used to locate a point on a

curved line based on the rectified distance from one of

the end-points. (Note that we deal with closed curves,

therefore, the endpoints coincide to one another.) The

curvilinear coordinate for a shape-contour dataset S
is calculated as illustrated in the pseudo-coded Algo-

rithm 2. The pseudo-code defines a function that inputs

Algorithm 2 Algorithm to calculate the curvilinear

coordinate associated to a shape contour

1: function CurvCoord(Sx, Sy)
2: s[1]← 0; . Initialize curve’s length
3: for i← 2, N do

4: qx← (Sx[i]− Sx[i− 1]) ∗ (Sx[i]− Sx[i− 1]);
5: qy ← (Sy[i]− Sy[i− 1]) ∗ (Sy[i]− Sy[i− 1]);
6: s[i]← s[i− 1] + sqrt(qx+ qy);
7: end for . Accumulate curve’s length
8: for i← 2, N do
9: s[i]← s[i]/s[N ];

10: end for . Normalize coordinate to [0, 1]
11: return s;
12: end function

the dataset S in the form of two vectors (Sx for the ξ̄

coordinates and Sy for the η̄ coordinates) and returns

a vector s for the curvilinear coordinates. The function

sqrt returns the square root of its argument.

In this way, two separate datasets, namely, Sξ =

{(si, ξ̄i) | i = 1, . . . , N} and Sη = {(si, η̄i) | i =

1, . . . , N} were obtained. The neural statistical mod-

eling procedure was applied separately to the dataset

Sξ to give the neural LUT model Mξ = {(ŝi, ξ̂i) | i =

1, . . . , R}, and to the dataset Sη to give the neural

LUT model Mη = {(ŝi, η̂i) | i = 1, . . . , R}, where

R denotes the number of points chosen to model the

data, as explained in Section 3. Note that, while the

values si are generally unevenly distributed, the values

ŝi are uniformly spaced within the domain [0, 1]. In

this dataset, the number of data-pairs is N = 1036.

A model of the whole shape S is then obtained as

M = {(ξ̂i, η̂i) | i = 1, . . . , R}.
It is to be noted how the datasets (si, ξ̄i) and (si, η̄i),

chosen to test the discussed neural modeling proce-

dure, are quite complex, therefore the estimation of the

marginal probability density functions of the involved

variables is challenging. For the considered dataset, in

fact, the estimated occurrence histograms for the vari-
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Fig. 3 Illustration of the bidimensional contour dataset (‘Sea
Horse’), referred to as Shape 1 dataset. Results of Experi-
ment 1 – Left-top panel: Original dataset (si, ξ̄i) (red dots)
and neural LUT model (ŝi, ξ̂i) (blue line). Left-bottom panel:
Original dataset (si, η̄i) (red dots) and neural LUT model
(ŝi, η̂i) (blue line). Right-hand panel: Original contour S (red
dots) and inferred model M (blue line).

ables ξ̄ and η̄, after being transfomed by the rule (10),

are shown in the Figure 4.

0 200 400 600 800 1000 1200 1400
0

20

40

60

80

100

120

Variable ξ̄

O
cc
u
rr
en

ce

0 200 400 600 800 1000 1200 1400
0

10

20

30

40

50

Variable η̄

O
cc
u
rr
en

ce

Fig. 4 Shape 1 dataset: Estimated occurrence histograms for
the variables ξ̄ and η̄ after being transformed by the method
(10). The number of bins calculated by the procedure of Al-
gorithm 1 is B = 61.

In order to quantify the features of the proposed

statistical modeling method, several figures-of-demerit

were defined. In particular, we used: Root mean squared

error, Mean absolute error, Root mean squared rough-

ness, and Coefficient of determination, as measures of

discrepancy between a dataset S and the neural model

M. Note that a coordinate pair in the neural LUT model

(ξ̂i, η̂i) may not be compared directly with the data-

pair (ξ̄i, η̄i), in general, because of the different underly-

ing resampling of the curvilinear coordinates si and ŝi.

Therefore, a model-pair (ξ̂i, η̂i) ∈ M is compared with

the data-pair (ξci , η
c
i ) ∈ S that corresponds to the clos-

est value of the curvilinear coordinate. For each value

of the index j = 1, 2, . . . , R, a pair (ξcj , η
c
j) is assigned

the pair (ξ̂i, η̂i) (namely ξcj ← ξ̂i and ηcj ← η̂i) whose

index i = 1, 2, . . . , N is the index of the curvilin-

ear coordinate si which is the nearest to the curvilinear

coordinate value ŝj of the model-pair (ξ̂j , η̂j). The num-

ber of points (ξcj , η
c
j) coincides, therefore, to the num-

ber R of model-points. A pseudo-code is displayed in

the Algorithm 3. The function described in the pseudo-

code inputs a shape-contour, represented by three ar-

rays Sx, Sy and s (which denote the ξ-data, the η-data

and the associated curvilinear coordinate, respectively)

and a LUT-based neural model of such shape-contour,

represented by three arrays hSx, hSy and hs (which de-

note the ξ, η-model and the associated curvilinear coor-

dinate, respectively). This function returns two arrays

cSx and cSy, which represent a set of points over the

given shape-contour closest to the points provided by

the model in terms of curvilinear coordinates. Note that

it is assumed that the entries in both arrays s and hs

are sorted in ascending order.

The mentioned figures-of-demerit are defined in the

Figure 5:

– The ‘root mean squared error’ measures the aver-

age discrepancy between an inferred model and the

original dataset in terms of squared differences.

– The ‘root mean squared roughness’ (or ‘root mean

square gradient’) measures the average roughness

of a model in terms of magnitude of its first-order

derivative. We devised this novel measure on the

basis of a figure-of-quality used in surface analysis

(see, for example, [9])3.

– The ‘mean absolute error’ measures the average dis-

crepancy between an inferred model and the original

dataset in a way similar to the RMSE, except that it

is based on absolute differences rather than squared

differences.

– The coefficients of determination R2
ξ and R2

η, are

numbers used in the context of statistical modeling,

3 The idea behind the RMSR index is as follows. Let us de-
note by z(x) the profile ordinate of a line parametererized
by x. A completely flat (i.e. minimally rough) profile will
be characterized by dz/dx = 0, hence the cumulative quan-
tity

∫
(dz/dx)2dx = 0. Conversely, the more a profile is un-

even/rough, the larger (dz/dx)2 is, the larger
∫

(dz/dx)2dx
will result. We took a numerical approximation of this in-
tegral as a measure of roughness of a shape, approximated
numerically by the sum of terms (ξ̂i− ξ̂i−1)2 and (η̂i− η̂i−1)2.
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Algorithm 3 Algorithm to calculate the closest points in a model corresponding to a given dataset

1: function Closest(Sx, Sy, s, hSx, hSy, hs)
2: N ← length(s); . Get dataset cardinality
3: R← length(hs); . Get model size
4: cSx[1]← Sx[1];
5: cSy[1]← Sy[1]; . First point coincides
6: i← 2;
7: for j ← 2, N do
8: while (s[i] < hs[j]) & (i < N) do

9: i← i+ 1;
10: end while . Scan the vector hs until the smallest value less than s[i]
11: if s[i]− hs[j] < hs[j]− s[i− 1] then
12: cSx[j]← Sx[i];
13: cSy[j]← Sy[i];
14: else

15: cSx[j]← Sx[i− 1];
16: cSy[j]← Sy[i− 1];
17: end if . Choose the closest value (s[i] or s[i− 1])
18: end for
19: return cSx, cSy;
20: end function

Root mean squared error (RMSE) =

√√√√ 1

R

R∑
i=1

((ξ̂i − ξci )2 + (η̂i − ηci )2),

Root mean squared roughness (RMSR) =

√√√√ 1

R− 1

R∑
i=2

((ξ̂i − ξ̂i−1)2 + (η̂i − η̂i−1)2),

Mean absolute error (MAE) =
1

R

R∑
i=1

(|ξ̂i − ξci |+ |η̂i − ηci |),

Coefficient of determination R2
ξ = 1−

∑R
i=1(ξ̂i − ξci )2∑R
i=1(ξci − 〈ξc〉)2

, 〈ξc〉 =
1

R

R∑
i=1

ξci ,

Coefficient of determination R2
η = 1−

∑R
i=1(η̂i − ηci )2∑R
i=1(ηci − 〈ηc〉)2

, 〈ηc〉 =
1

R

R∑
i=1

ηci .

Fig. 5 Figures-of-demerit of a regression algorithm.

whose main purpose is hypothesis testing. It pro-

vides a measure of how well observed outcomes are

replicated by the model, based on the proportion of

total variation of outcomes explained by the model

[16].

Experiment 1. In the first experiment, an even re-

sampling is illustrated, namely, R = N , as shown in the

Figure 3. The statistical modeling procedure was com-

pared with linear interpolation and with cubic-spline

interpolation4. The obtained results are displayed in

the Table 2. The statistical model exhibits the largest

RMSE and MAE figures compared to linear interpola-

tion and spline interpolation. On the other hand, the

statistical model exhibits the lowest RMSR figure com-

4 We used the MATLAB function interp1 with the syntax
yh = interp1(x,y,xh,method), where (x,y) is a dataset, yh is
the result of interpolation at ‘query points’ xh, and method is
either ‘linear’ or ‘spline’.

Table 2 Experiment on even resampling on Shape 1 dataset:
Results of modeling by statistical regression compared with
linear and spline interpolation

Indexes Linear Spline StatMod

RMSE 0.3438 0.3450 2.8996
RMSR 1.1194 1.1428 0.9642
MAE 0.3576 0.3637 2.8326
R2
ξ 1.0000 1.0000 0.9996

R2
η 1.0000 1.0000 0.9958

pared with linear interpolation and spline interpola-

tion (which returns a curly model due to the under-

lying cubic spline). The values of the coefficients of de-

termination corresponding to the statistical model are

slightly smaller than 1. While the data-modeling pro-

cedure based on linear or spline interpolation follows

the data closely, the neural LUT model returned by the

statistical inference algorithm tries to capture the in-
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formation content buried in the data and produces a

smoother model, which is deemed a desirable feature.

Experiment 2. In the second experiment, a down-

sampling is illustrated, namely, R < N . First, it was

chosen R = 100. The Figure 6 renders the result of

such downsampling. The statistical modeling procedure
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Fig. 6 Shape 1 dataset: Results of the Experiment 2 – Case
R = 100. Left-top panel: Original dataset (si, ξ̄i) (red dots)
and neural LUT model (ŝi, ξ̂i) (blue line). Left-bottom panel:
Original dataset (si, η̄i) (red dots) and neural LUT model
(ŝi, η̂i) (blue line). Right-hand panel: Original contour S (red
dots) and inferred model M (blue line).

was compared with linear interpolation and with cubic-

spline interpolation. The obtained results are displayed

in the Table 3. Second, it was chosen R = 500. The Fig-

Table 3 Experiment on downsampling (R = 100) the Shape

1 dataset: Results of modeling by statistical regression com-
pared with linear and spline interpolation

Indexes Linear Spline StatMod

RMSE 0.3868 0.3933 2.8814
RMSR 10.4275 10.4383 9.8066
MAE 0.4192 0.4309 2.8278
R2
ξ 1.0000 1.0000 0.9996

R2
η 0.9999 0.9999 0.9957

ure 7 shows the result of such downsampling. A com-

parison of the statistical modeling procedure with lin-

ear and with cubic-spline interpolation is displayed in

the Table 4. In both cases, the RMSE and the MAE

pertaining to the statistical modeling method is much

higher than the RMSE pertaining to the linear and

to the spline interpolation, while the RMSR is lower.

The values of the coefficients of determination appear

comparable. It can be concluded that the statistical
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Fig. 7 Shape 1 dataset: Results of the Experiment 2 – Case
R = 500. Left-top panel: Original dataset (si, ξ̄i) (red dots)
and neural LUT model (ŝi, ξ̂i) (blue line). Left-bottom panel:
Original dataset (si, η̄i) (red dots) and neural LUT model
(ŝi, η̂i) (blue line). Right-hand panel: Original contour S (red
dots) and inferred model M (blue line).

Table 4 Experiment on downsampling (R = 500) the Shape
1 dataset: Results of modeling by statistical regression com-
pared with linear and spline interpolation

Indexes Linear Spline StatMod

RMSE 0.3492 0.3511 2.9048
RMSR 2.2599 2.2817 1.9925
MAE 0.3619 0.3705 2.8588
R2
ξ 1.0000 1.0000 0.9996

R2
η 0.9999 0.9999 0.9957

modeling returns an unfaithful model, with respect to

the original data, while keeping the computed model

smoother than the original data.

An advantage of getting a smoother neural LUT

model is that it enables computing more accurately two

functions associated with the evenly downsampled con-

tour, namely, the angular function θ(ŝ), whose samples

are computed by means of the approximation

θi = tan−1
(
η̂i − η̂i−1
ξ̂i − ξ̂i−1

)
, (12)

and its derivative with respect to the curvilinear coordi-

nate ŝ, θ′(ŝ), whose samples are computed numerically

by

θ′i =
θi − θi−1
∆ŝ

, (13)

with ∆ŝ = 1
R−1 denoting the spacing between two adja-

cent points (in terms of their curvilinear coordinates).

The angular function as well as its first-order deriva-
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tive5 are instrumental in the analysis connected to the

geometrization of the shape space [20]. The results of

the estimation of the angular function and of its deriva-

tive on the basis of the models obtained by spline inter-

polation, linear interpolation and statistical modeling

with R = 500 are shown in the Figure 8. The angular
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Fig. 8 Shape 1 dataset: Results of the Experiment 2 – Case
R = 500. Left-hand columns: Angular function θ(ŝ). Right-
hand column: Derivative θ′(ŝ). First row: Results obtained
with cubic spline interpolation. Second row: Results obtained
by linear interpolation. Third row: Results obtained by sta-
tistical modeling.

function θ estimated by the statistical model is much

smoother than the estimates obtained by means of a

linear/spline downsampling, which, in turn, enables a

more accurate estimation of the derivative θ′.
Experiment 3. In the third experiment, the sam-

pling rate was set to R > N . The first trial concerns the

case that R = b 104 Nc, the second considered trial con-

cerns the case that R = b 107 Nc and the third trial refers

to the situation in which R = b 109 Nc. The results for

such three cases are summarized in the Table 5. The

obtained results suggest that, as for the previous ex-

periments, the proposed neural system learns a smooth

model.

4.3 Comparative experiments on four shape-contours

While the previous three experiments were conducted

on the Shape 1 dataset only, in this last numerical ex-

periment we compared the behavior of the considered

5 The derivative κ(s) = θ′(s) represents the local curvature
of the planar shape described by the orientation function θ(s).

Table 5 Experiment on interpolation on the Shape 1 dataset:
Results of modeling by statistical regression compared with
linear and spline interpolation

Indexes (Resampling) Linear Spline StatMod

RMSE (R = b(10/4)Nc) 0.5517 0.5530 4.5724
RMSR (R = b(10/4)Nc) 0.7198 0.7363 0.6105
MAE (R = b(10/4)Nc) 0.9097 0.9246 7.1294
R2
ξ (R = b(10/4)Nc) 1.0000 1.0000 0.9996

R2
η (R = b(10/4)Nc) 1.0000 1.0000 0.9958

RMSE (R = b(10/7)Nc) 0.4153 0.4154 3.4601
RMSR (R = b(10/7)Nc) 0.9438 0.9660 0.8067
MAE (R = b(10/7)Nc) 0.5188 0.5261 4.0808
R2
ξ (R = b(10/7)Nc) 1.0000 1.0000 0.9996

R2
η (R = b(10/7)Nc) 1.0000 1.0000 0.9958

RMSE (R = b(10/9)Nc) 0.3632 0.3639 3.0396
RMSR (R = b(10/9)Nc) 1.0647 1.0878 0.9143
MAE (R = b(10/9)Nc) 0.3975 0.4038 3.1593
R2
ξ (R = b(10/9)Nc) 1.0000 1.0000 0.9996

R2
η (R = b(10/9)Nc) 1.0000 1.0000 0.9958

statistical modeling algorithms on four further shape-

contour datasets, illustrated in the Figure 9. Moreover,

in the first test below, we compare the modeling ca-

pabilities of the proposed Three-stage neural modeling

algorithm with those exhibited by the Learning rule 1,

Learning rule 2 and Learning rule 3 proposed in the

previous publication [14]. (It is, perhaps, useful to un-

derline that a comparison with the earlier method pro-

posed in [11] is not feasible, since the shape-contour

datasets are markedly non-monotonic, while the statis-

tical modeling algorithm proposed in [11] is only able

to cope with monotonic datasets.)

Fig. 9 Illustration of the Shape 2, Shape 3, Shape 4 and Shape

5 datasets.

Experiment 1. In the first experiment, again an

even resampling is illustrated, namely, we set R = N .
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The statistical modeling procedure was compared with

linear interpolation and with cubic-spline interpolation.

Since the three neural modeling algorithms introduced

in the previous work [14] (and summarized in the Sub-

section 2.2) can cope with the case R = N , we also

compared the statistical modeling procedure with these

three methods.

The obtained results are displayed in the Table 6. It

is interesting to see how similar shapes get similar val-

ues of the performance indexes as, for example, Shape

4 and Shape 5. Conversely, contour-shapes that appear

quite different from one another as, for example, Shape

2 and Shape 3, get quite different values of the error

and roughness indexes.

Experiment 2. In the second experiment, an even

downsampling is illustrated, namely, R < N . First, it

was chosen R = 100. The statistical modeling proce-

dure was compared with linear interpolation and with

cubic-spline interpolation. The obtained results are dis-

played in the Table 7. Second, it was chosen R = 500. A

comparison of the statistical modeling procedure with

linear and with cubic-spline interpolation is displayed

in the Table 8.

Experiment 3. In the third experiment, the sam-

pling rate was set again to R > N with three different

ratios R/N . The results for such three cases are sum-

marized in the Table 9. The results suggest that, as for

the previous experiments, the proposed neural-LUT al-

gorithm learns a smooth model.

5 Conclusion

The present paper introduces a novel neural statistical

modeling procedure. The discussed modeling method

is based on a previously-introduced isotonic model-

ing technique that is able to capture only monotonic

dependencies and whose scope was extended to non-

monotonic data through a linear data-transformation

technique.

The resulting procedure is computationally light

and fast to execute. Experimental results show that

the estimated model is smoother than the models ob-

tained with linear and cubic-spline-based interpolation

techniques (as well as the models obtain by means of

the previous neural modeling technique proposed by the

first author and colleagues in [14]). This feature makes

the proposed technique be suitable to the estimation of

model derivatives. In summary, the main contributions

of the present paper with respect to the previous works

[11,14] may be outlined as follows:

– The present neural modeling algorithm is able to

deal with bivariate non-monotonic relationships,

while the previous contribution [11] could only deal

with monotonic relationships;

– The proposed neural modeling algorithm allows for

an arbitrary resampling rate R/N , while the previ-

ous contribution [14] could only deal with the case

R = N ;

– The proposed modeling technique performs data-

monotonization by a simple linear transformation

of the data, while the previous contribution [14]

involved a complex multiplicative transform to be

learned from the dataset. As a result, the spatial

complexity as well as the time complexity of the

current modeling method are considerably lower.

A current limitation of the discussed technique is

that it may be applied to bivariate data only. Future en-

deavors will be devoted to the extension of the trivariate

isotonic modeling method, which works for three vari-

ables [12,13], to the non-monotonic trivariate case. In

addition, a research endeavor toward the extension of

the discussed techniques to non-stationary (i.e., time-

varying) datasets is currently being pursued.
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A MATLAB Implementation of the novel

regression procedure

A MATLAB© implementation of the modeling procedure
devised in the present research and illustrated in the Algo-
rithm 3 is reported in the Figure 10. The MATLAB© code
illustrates the simple structure of the proposed method.

The MATLAB© function inputs the triple (Sx,Sy,xx) as
three arrays. The array-pair (Sx,Sy) represents the dataset D
to be modeled as a look-up table, the array xx represents the
set of x̂-values whose corresponding ŷ-values are sought6. The
function returns an array yy that represents the estimated
model M as a LUT neural network (xx,yy).

In the above version of the statistical isotonic modeling

procedure, the number of subdivisions for probability density

function estimation is automatically selected by the rules in

the command line 5 and does not coincide necessarily with

the number R of partitions of the x-axes for model estimation.

The command line 7 computes the lifting-upward constant c

in equation (8), while the command lines 9 and 26 perform

the lifting upward/downward, respectively. The lines 11–24

are borrowed from the isotonic modeling procedure described

in [11].

6 The above procedure takes the same syntax of the Mat-

lab©’s function ‘interp1’.

1 function yy = statmod(Sx,Sy,xx)
2 % Cardinality of data sets
3 N=length(Sx);
4 % Numbers of bins
5 B=ceil(20*log10(N));
6 % Lifting constant
7 c=1.01*max(−diff(Sy)./diff(Sx));
8 % Lifting upward the y−data
9 Sy=Sy+c*Sx;

10 % Estimation of the pdf's
11 [px,x]=hist(Sx,B);
12 [py,y]=hist(Sy,B);
13 % Compute bins' size
14 DDx=(max(Sx)−min(Sx))/B;
15 DDy=(max(Sy)−min(Sy))/B;
16 % Pdf's normalization
17 px=px/N;
18 py=(N*py+1)/(B+Nˆ2);
19 % Estimation of the cdf's
20 Px=[0 cumsum(px)]; xsh=[min(Sx) x+DDx/2];
21 Py=[0 cumsum(py)]; ysh=[min(Sy) y+DDy/2];
22 % Estimation of the model
23 PPx=interp1(xsh,Px,xx,'linear','extrap');
24 yysh=interp1(Py,ysh,PPx,'linear','extrap');
25 % Shifting downward the y−data
26 yy=yysh−c*xx;

Fig. 10 MATLAB© code that implements the three-stage
neural modeling algorithm.
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