EXACT LOW-ORDER POLYNOMIAL EXPRESSIONS TO COMPUTE THE KOLMOGOROFF-NAGUMO MEAN IN THE AFFINE SYMPLECTIC GROUP OF OPTICAL TRANSFERENCE MATRICES

SIMONE FIORI∗† AND STILIAN PRIFTI†

Abstract. The current contribution presents exact third-order polynomial expressions of matrix functions that arise in the computation of the Kolmogoroff-Nagumo mean of a set of optical transference matrices, that belong to the affine symplectic group ASp(4).

Key words. Affine symplectic group of matrices; Exact low-order polynomial representation; Kolmogoroff-Nagumo mean; Linear optical transference.

1. Introduction. The group of real symplectic matrices Sp(2n), with \(n \in \mathbb{N} \) and \(n \geq 1 \), is an instance of quadratic matrix group [14]. Symplectic matrices find wide applications in sciences and engineering. Noteworthy examples of applications are found in vibration analysis [3], in optimal control [2, 15], in electromagnetism [16] and in computational optics [7].

The present contribution is motivated by an application in linear optics: When a ray of light passes through a lens (such as the lens in a telescope) the ray is refracted and the change in direction may be described by a symplectic matrix.

The recent contribution [8] deals with the computation of the Kolmogoroff-Nagumo mean of a set of centered linear optical systems. Each of such systems is described by a \(4 \times 4 \) real symplectic matrix, namely, by an element of the Lie group Sp(4), termed astigmatic matrix. Given as set of \(N \) astigmatic matrices \(S_n \in \text{Sp}(4) \), its Kolmogoroff-Nagumo mean is denoted by:

\[
\bar{S}_{\text{KN}} := \varphi \left(\frac{1}{N} \sum_{n=1}^{N} \varphi^{-1}(S_n) \right),
\]

where \(\varphi^{-1} : \text{Sp}(4) \to \text{sp}(4) \), with \(\text{sp}(4) \) denoting the Lie algebra associated with the Lie group \(\text{Sp}(4) \) formed by all the \(4 \times 4 \) Hamiltonian matrices, and \(\varphi : \text{sp}(4) \to \text{Sp}(4) \) denotes its inverse. (In general, the function \(\varphi^{-1} \) is defined only locally in an open set \(U_{\varphi} \subset \text{Sp}(4) \).) The rationale of the Kolmogoroff-Nagumo mean is that while the symplectic group \(\text{Sp}(4) \) is a curved manifold, hence it is impossible to take an arithmetic mean over such a space directly, its Lie algebra is a linear space, where an arithmetic mean is well-defined. Therefore, the symplectic matrices \(S_n \) are first mapped to the Lie algebra through a suitable map \(\varphi^{-1} \) and the result of arithmetic averaging is brought back to the Lie group through its inverse \(\varphi \). In fact, the actual calculations are taken in the Lie algebra. This is the approach usually adopted, for instance, in the numerical integration of ODEs on Lie groups (see, for instance, [4, 5]).

In the contribution [8], the following pairs of maps were considered:

- The map \(\varphi^{-1} = \log \), namely, the matrix logarithm. Its inverse is \(\varphi = \exp \), namely, the

* Dipartimento di Ingegneria dell’Informazione, Università Politecnica delle Marche, Via Brecce Bianche, I-60131 Ancona (Italy)
† School of Mechanical Engineering, Università Politecnica delle Marche, Via Brecce Bianche, I-60131 Ancona (Italy)
Corresponding author. eMail: s.fiori@univpm.it. Cite this paper as: S. Fiori and S. Prifti, “Exact low-order polynomial expressions to compute the Kolmogoroff-Nagumo mean in the affine symplectic group of optical transference matrices”, Linear and Multilinear Algebra, Vol. 65, No. 4, pp. 840 — 856, 2017
matrix exponential. Such maps are defined as matrix-to-matrix series, namely:
\[
\exp(X) := I + \sum_{k=1}^{\infty} \frac{X^k}{k!},
\]
(1.2)
\[
\log(X) := -\sum_{k=1}^{\infty} \frac{(I - X)^k}{k}.
\]
(1.3)

The series for the logarithmic map converges as long as \(\|X - I\| < 1 \). Given a symplectic matrix \(S \in \text{Sp}(4) \), its logarithm \(\log(S) \) is defined by the matrix-power series (1.3) and is hence cumbersome to evaluate; likewise, given an Hamiltonian matrix \(H \in \mathfrak{sp}(4) \), its exponential \(\exp(H) \) is cumbersome to compute by the series (1.2).

• The map \(\varphi^{-1} = \text{cay} \), namely, the matrix Cayley transform, defined as
\[
\text{cay}(X) := (I + X)(I - X)^{-1},
\]
(1.4)
well-defined if \(X - I \in \text{GL}(n) := \{ Y \in \mathbb{R}^{n \times n} \mid \det(Y) \neq 0 \} \). Since the Cayley transform is self-inverse, the inverse map is \(\varphi = \text{cay} \).

In particular, the contribution [8] recalled how an analytic function \(\varphi \) of a \(4 \times 4 \) real-valued matrix may be calculated exactly as a third-order polynomial, namely:
\[
\varphi(H) = \varphi_3H^3 + \varphi_2H^2 + \varphi_1H + \varphi_0I,
\]
(1.5)
\[
\varphi^{-1}(S) = \varphi_3^{-1}S^3 + \varphi_2^{-1}S^2 + \varphi_1^{-1}S + \varphi_0^{-1}I,
\]
(1.6)
and gave explicit formulas for the coefficients \(\varphi_0, \varphi_1, \varphi_2, \varphi_3 \) and \(\varphi_0^{-1}, \varphi_1^{-1}, \varphi_2^{-1}, \varphi_3^{-1} \) as functions of the eigenvalues of the matrices \(H \) and \(S \), respectively, both for the exp/log maps-pair and for the cay/cay maps-pair. Since the eigenvalue structure of an Hamiltonian matrix and of a symplectic matrix presents several possible cases, several cases of interest were classified and solved for, separately.

The Kolmogoroff-Nagumo mean may be calculated for every matrix Lie group and it coincides with the output of the first step, with a specific starting point (namely, the group identity), of a general averaging algorithm developed in [10]. In order to compare the Kolmogoroff-Nagumo mean with the general algorithm presented in [10], it is also necessary to identify the pair \((\varphi, \varphi^{-1})\) with a pseudo-retraction/pseudo-lifting maps pair. A further generalization on this line is that the pair of conjugate functions \((\varphi, \varphi^{-1})\) may be replaced with a pair \((\varphi, \psi)\), such that the composition \(\varphi \circ \psi \) behaves as an approximate identity [9], with the aim of lightening the computational burden associated with the Kolmogoroff-Nagumo mean. It is worth underlying that not every Kolmogoroff-Nagumo-like averaging rule is an instance of the Lie-group averaging scheme (1.1). This is the case, for example, of the resolvent average \(S^{\text{res}} := \varphi \left(\frac{\sum_{n=1}^{N} \varphi^{-1}(S_n)/N \right) \) with \(\varphi(H) := H^{-1} - I \) introduced in [1]. Since \(\varphi \) does not map an \(\mathfrak{sp}(4) \)-matrix into an \(\text{Sp}(4) \)-matrix, such an averaging rule does not result to be an instance of the Lie-group-type Kolmogoroff-Nagumo averaging rule (1.1). The Kolmogoroff-Nagumo mean as well as taking averages over the real symplectic group are special cases of a more general problem, namely, averaging over curved manifolds (see, for instance, the study [6]).

The above setting is of limited scope in the sense that it was developed for centered optical systems only. In the presence of decentered optical systems, the above setting is no longer suitable. In fact, a general optical system cannot be represented only in terms of an astigmatic matrix, but it is necessary to call for an augmented optical transference matrix of the form:
\[
T = \begin{bmatrix}
S & \delta \\
0 & 1 \\
2
\end{bmatrix},
\]
(1.7)
where $S \in \mathfrak{sp}(4)$ is the astigmatic submatrix and $\delta \in \mathbb{R}^4$ represents a shift of the optical system with respect to its center. The resulting 5×5 matrix belongs to the affine symplectic group $\mathbb{A}\mathfrak{sp}(4)$, that is a Lie group under standard matrix multiplication/inverse, whose Lie algebra is denoted as $\mathfrak{asp}(4)$. For a review of the (affine) symplectic group, see, e.g., [11]. A generic element L of the algebra $\mathfrak{asp}(4)$ presents the following structure:

$$L = \begin{bmatrix} H & v \\ 0 & 0 \end{bmatrix},$$

with $H \in \mathfrak{sp}(4)$ and $v \in \mathbb{R}^4$. The exponential-logarithm-based Kolmogoroff-Nagumo mean of a set of N optical system transference matrices T_n reads:

$$\bar{T}_{KN}^{exp} := \exp \left(\frac{1}{N} \sum_{n=1}^{N} \log(T_n) \right),$$

while the Cayley-Cayley-based Kolmogoroff-Nagumo mean of a set of N optical system transference matrices T_n reads

$$\bar{T}_{KN}^{cay} := -\text{cay} \left(\frac{1}{N} \sum_{n=1}^{N} \text{cay}(-T_n) \right).$$

The reason for the change of sign in the definition (1.10) is that, from the general structure of an optical transference matrix (1.7), it follows immediately that the matrix $I - T$ is not invertible, while the matrix $I + T$ is surely invertible.

The maps φ and φ^{-1} considered in the previous definition may be evaluated on the basis of exponential/logarithmic/Cayley maps applied to symplectic and Hamiltonian matrices. In fact, it holds that:

$$\exp(L) = \begin{bmatrix} \exp(H) & M_1(H) & v \\ 0 & M_2(H) & 1 \end{bmatrix}, \quad \log(T) = \begin{bmatrix} \log(S) & M_2(S) & \delta \\ 0 & 0 & 0 \end{bmatrix},$$

$$\text{cay}(L) = \begin{bmatrix} \text{cay}(H) & M_3(H) & v \\ 0 & 0 & 1 \end{bmatrix}, \quad \text{cay}(-T) = \begin{bmatrix} \text{cay}(-S) & (\text{cay}(-S) + I) & \delta/2 \\ 0 & 0 & 0 \end{bmatrix},$$

where the matrix functions M_1, M_2 and M_3 are defined as:

$$M_1 : \mathfrak{sp}(4) \to \mathfrak{sp}(4), \quad M_1(H) := (\exp(H) - I)H^{-1},$$

$$M_2 : \text{Sp}(4) \to \mathfrak{sp}(4), \quad M_2(S) := \log(S)S^{-1},$$

$$M_3 : \mathfrak{sp}(4) \to \mathfrak{sp}(4), \quad M_3(H) := (\text{cay}(H) - I)H^{-1} = 2H(I - H)^{-1}H^{-1}.$$ \hspace{1cm} (1.15)

The function M_1 is well-defined only if $H \in \text{GL}(4)$, the matrix function M_3 is well-defined only if $H \in \text{GL}(4)$ and $H - I \in \text{GL}(4)$, while the function M_2 is well-defined only if $S - I \in \text{GL}(4)$. Since the matrix-functions H^{-1} and $(I - H)^{-1}$ are analytic within the existence field of the function M_3, and since analytic matrix-functions of the same matrix-variable commute, it holds that $2H(I - H)^{-1}H^{-1} = 2HH^{-1}(I - H)^{-1} = 2(I - H)^{-1}$, hence:

$$M_3(H) = 2(I - H)^{-1}.$$ \hspace{1cm} (1.16)

The functions M_1, M_2 and M_3 differ from the functions exp, log and cay, hence, in the present work, we propose to compute them explicitly as third-order polynomials. For the evaluation of a term like $\text{cay}(-T)$ there is no special function needed, because the evaluation of the quantity $\text{cay}(-S)$ was already covered in the previous contribution [8].
2. Third-order polynomials to compute 4×4-matrix functions. The method presented in the current paper to compute a non-linear matrix function by means of a low-order polynomial is a special case of a general method based on the Lagrange generalized polynomials recalled, for example, in the Appendix A of the book [12].

An analytic function of a 4×4 matrix may be evaluated through an exact third-order polynomial formula whose coefficients depend on the eigenvalues of the matrix. Let X denote a 4×4 real-valued matrix. The characteristic polynomial associated with the matrix X is $p_X(z) := \det(zI - X)$, where $z \in \mathbb{C}$ denotes a scalar complex-valued variable, which is a monic polynomial of degree 4:

$$p_X(z) = z^4 + p_3z^3 + p_2z^2 + p_1z + p_0,$$ \hspace{1cm} (2.1)

where $p_3, p_2, p_1, p_0 \in \mathbb{R}$ are the scalar coefficients of the characteristic polynomial (that coincide, up to a change of sign, with the principal invariants associated to the matrix X and may be computed through Newton’s identities [17]) and the roots of the polynomial (2.1) are the eigenvalues of the matrix X. Namely, denoting with λ_X an eigenvalue of the matrix X, it holds that

$$p_X(\lambda_X) = 0.$$ \hspace{1cm} (2.2)

The Cayley-Hamilton theorem states that each matrix satisfies its own characteristic equation. In the present context, the Cayley-Hamilton theorem casts as:

$$P_X(X) := X^4 + p_3X^3 + p_2X^2 + p_1X + p_0I = 0.$$ \hspace{1cm} (2.3)

By definition, any analytic function may be expanded as a polynomial. Moreover, to any matrix-to-matrix function F may be associated a scalar-to-scalar function by replacing the matrix argument with a scalar argument. Hence, the matrix-to-matrix analytic function $F(X)$ may be thought of as a polynomial $f(z)$ in the variable $z \in \mathbb{C}$. The polynomial $f(z)$ may be written as:

$$f(z) = q(z)p_X(z) + r(z),$$ \hspace{1cm} (2.4)

where $q(z)$ is the quotient polynomial and $r(z)$ is the remainder polynomial of degree (at most) 3, namely:

$$r(z) = f_3z^3 + f_2z^2 + f_1z + f_0,$$ \hspace{1cm} (2.5)

where $f_3, f_2, f_1, f_0 \in \mathbb{R}$ are the scalar coefficients of the polynomial $r(z)$. By setting $z = \lambda_X$ in the equation (2.4), thanks to the identity (2.2), it is readily seen that:

$$f(\lambda_X) = r(\lambda_X).$$ \hspace{1cm} (2.6)

The corresponding relationship in the matrix variable X reads:

$$F(X) = Q(X)P_X(X) + R(X).$$ \hspace{1cm} (2.7)

Since, by the Cayley-Hamilton theorem (2.3), it holds that $P_X(X) = 0$, from the equation (2.7) it follows that $F(X) = R(X)$. Therefore, the matrix function $F(X)$ may be evaluated, exactly, as a third-order matrix polynomial, namely, as:

$$F(X) = f_3X^3 + f_2X^2 + f_1X + f_0I,$$ \hspace{1cm} (2.8)

where the scalar coefficients of the polynomial expression of the function $F(X)$ are to be sought.

The key point in the computation of the coefficients f_3, f_2, f_1, f_0 in the polynomial expression (2.8) is that they are also the coefficients of the polynomial expression of the associated scalar-to-scalar function $f(z)$. Therefore, one may exploit the identity (2.6) to calculate such coefficients.
For symmetry reasons, it is known that the eigenvalues of an Hamiltonian and of a symplectic 4×4 matrix may appear with multiplicity 1, 2 or 4.

Given a matrix-to-matrix analytic function F (and its associated scalar counterpart f), given the four eigenvalues of the matrix X, namely $\lambda_X^a, \lambda_X^b, \lambda_X^c, \lambda_X^d$, and supposing that they are all distinct, the coefficients f_3, f_2, f_1, f_0 are found by solving the following linear system:

$$
\begin{align*}
&\begin{cases}
(\lambda_X^a)^3 f_3 + (\lambda_X^b)^2 f_2 + (\lambda_X^c)^2 f_1 + f_0 = f(\lambda_X^a), \\
(\lambda_X^a)^3 f_3 + (\lambda_X^b)^2 f_2 + (\lambda_X^c)^2 f_1 + f_0 = f(\lambda_X^b), \\
(\lambda_X^a)^3 f_3 + (\lambda_X^b)^2 f_2 + (\lambda_X^c)^2 f_1 + f_0 = f(\lambda_X^c), \\
(\lambda_X^a)^3 f_3 + (\lambda_X^b)^2 f_2 + (\lambda_X^c)^2 f_1 + f_0 = f(\lambda_X^d).
\end{cases} \\
\end{align*}
\tag{2.9}
$$

In matrix format, the above linear system casts as

$$
\begin{bmatrix}
1 & \lambda_X^a & (\lambda_X^a)^2 & (\lambda_X^a)^3 \\
1 & \lambda_X^b & (\lambda_X^b)^2 & (\lambda_X^b)^3 \\
1 & \lambda_X^c & (\lambda_X^c)^2 & (\lambda_X^c)^3 \\
1 & \lambda_X^d & (\lambda_X^d)^2 & (\lambda_X^d)^3
\end{bmatrix}
\begin{bmatrix}
f_0 \\
f_1 \\
f_2 \\
f_3
\end{bmatrix}
=
\begin{bmatrix}
f(\lambda_X^a) \\
f(\lambda_X^b) \\
f(\lambda_X^c) \\
f(\lambda_X^d)
\end{bmatrix}.
\tag{2.10}
$$

The matrix V of the coefficients is square Vandermonde. The coefficients of the polynomial (2.8) are found by inverting the matrix V and then by computing $V^{-1}g$. The inversion of a square Vandermonde matrix is facilitated by its LU decomposition, that is given explicitly for the 4×4 case, e.g., in the contribution [13]. The explicit solution of the above Vandermonde-type system is:

$$
\begin{align*}
\begin{cases}
f_0 &= f(\lambda_X^a) \lambda_X^b \lambda_X^c \lambda_X^d \\
& - f(\lambda_X^a) \lambda_X^b \lambda_X^c \lambda_X^d \\
& - f(\lambda_X^a) \lambda_X^b \lambda_X^c \lambda_X^d \\
& - f(\lambda_X^a) \lambda_X^b \lambda_X^c \lambda_X^d \\
\end{cases} \\
\begin{cases}
f_1 &= f(\lambda_X^a) \lambda_X^b \lambda_X^c \lambda_X^d \\
& - f(\lambda_X^a) \lambda_X^b \lambda_X^c \lambda_X^d \\
& - f(\lambda_X^a) \lambda_X^b \lambda_X^c \lambda_X^d \\
& - f(\lambda_X^a) \lambda_X^b \lambda_X^c \lambda_X^d \\
\end{cases} \\
\begin{cases}
f_2 &= f(\lambda_X^a) \lambda_X^b \lambda_X^c \lambda_X^d \\
& - f(\lambda_X^a) \lambda_X^b \lambda_X^c \lambda_X^d \\
& - f(\lambda_X^a) \lambda_X^b \lambda_X^c \lambda_X^d \\
& - f(\lambda_X^a) \lambda_X^b \lambda_X^c \lambda_X^d \\
\end{cases} \\
\begin{cases}
f_3 &= f(\lambda_X^a) \lambda_X^b \lambda_X^c \lambda_X^d \\
& - f(\lambda_X^a) \lambda_X^b \lambda_X^c \lambda_X^d \\
& - f(\lambda_X^a) \lambda_X^b \lambda_X^c \lambda_X^d \\
& - f(\lambda_X^a) \lambda_X^b \lambda_X^c \lambda_X^d \\
\end{cases}
\end{align*}
\tag{2.11}
$$

Whenever the eigenvalues of the matrix X are not distinct, repeating the equations (2.5) and (2.6) leads to an unsolvable (under-determined) linear system, of little use. In this case, it is necessary to evaluate the polynomial expression of the derivatives of the function f. For example, starting over from equation (2.4) and computing the analytic derivative with respect to the variable z of both sides, gives:

$$
f'(z) = q'(z)p_X(z) + q(z)p_X'(z) + r'(z).
\tag{2.12}
$$

Upon evaluating such expression in an eigenvalue λ_X, supposed of algebraic multiplicity equal to 2, the first term on the right-hand side vanishes because $p_X(\lambda_X) = 0$ and the second term on the
right-hand side vanishes because \(p'_X(\lambda_X) = 0 \) as well. Therefore, for an eigenvalue of multiplicity 2, it holds that

\[
f'(\lambda_X) = r'(\lambda_X) = 3(\lambda_X)^2 f_3 + 2\lambda_X f_2 + f_1. \tag{2.13}
\]

Hence, for a matrix \(X \) with two distinct eigenvalues \(\lambda_X^a, \lambda_X^b \), both of multiplicity 2, the resolving linear system reads:

\[
\begin{align*}
(\lambda_X^a)^3 f_3 + (\lambda_X^a)^2 f_2 + \lambda_X^a f_1 + f_0 &= f(\lambda_X^a), \\
3(\lambda_X^a)^2 f_3 + 2\lambda_X^a f_2 + f_1 &= f'(\lambda_X^a), \\
(\lambda_X^b)^3 f_3 + (\lambda_X^b)^2 f_2 + \lambda_X^b f_1 + f_0 &= f(\lambda_X^b), \\
3(\lambda_X^b)^2 f_3 + 2\lambda_X^b f_2 + f_1 &= f'(\lambda_X^b).
\end{align*} \tag{2.14}
\]

In matrix format, the above linear system casts as

\[
\begin{bmatrix}
1 & \lambda_X^a & (\lambda_X^a)^2 & (\lambda_X^a)^3 \\
0 & 1 & 2\lambda_X^a & 3(\lambda_X^a)^2 \\
1 & \lambda_X^b & (\lambda_X^b)^2 & (\lambda_X^b)^3 \\
0 & 1 & 2\lambda_X^b & 3(\lambda_X^b)^2
\end{bmatrix}
\begin{bmatrix}
f_0 \\
f_1 \\
f_2 \\
f_3
\end{bmatrix}
=
\begin{bmatrix}
f(\lambda_X^a) \\
f'(\lambda_X^a) \\
f(\lambda_X^b) \\
f'(\lambda_X^b)
\end{bmatrix} \tag{2.15}
\]

In the mixed case that there are two distinct eigenvalues \(\lambda_X^a \) and \(\lambda_X^b \) with multiplicity 1 and an eigenvalue \(\lambda_X^c \) with multiplicity 2, the resolving linear system reads:

\[
\begin{align*}
(\lambda_X^a)^3 f_3 + (\lambda_X^a)^2 f_2 + \lambda_X^a f_1 + f_0 &= f(\lambda_X^a), \\
(\lambda_X^b)^3 f_3 + (\lambda_X^b)^2 f_2 + \lambda_X^b f_1 + f_0 &= f(\lambda_X^b), \\
(\lambda_X^c)^3 f_3 + (\lambda_X^c)^2 f_2 + \lambda_X^c f_1 + f_0 &= f(\lambda_X^c), \\
3(\lambda_X^c)^2 f_3 + 2\lambda_X^c f_2 + f_1 &= f'(\lambda_X^c).
\end{align*} \tag{2.16}
\]

In matrix format, the above linear system casts as

\[
\begin{bmatrix}
1 & \lambda_X^a & (\lambda_X^a)^2 & (\lambda_X^a)^3 \\
1 & \lambda_X^b & (\lambda_X^b)^2 & (\lambda_X^b)^3 \\
1 & \lambda_X^c & (\lambda_X^c)^2 & (\lambda_X^c)^3 \\
0 & 1 & 2\lambda_X^c & 3(\lambda_X^c)^2
\end{bmatrix}
\begin{bmatrix}
f_0 \\
f_1 \\
f_2 \\
f_3
\end{bmatrix}
=
\begin{bmatrix}
f(\lambda_X^a) \\
f(\lambda_X^b) \\
f(\lambda_X^c) \\
f'(\lambda_X^c)
\end{bmatrix} \tag{2.17}
\]

Likewise, for an eigenvalue \(\lambda_X \) of algebraic multiplicity 4, it holds that \(f''(\lambda_X) = r''(\lambda_X) \), namely:

\[
f''(\lambda_X) = 6\lambda_X f_3 + 2f_2, \tag{2.18}
\]

and that \(f'''(\lambda_X) = r'''(\lambda_X) \), namely:

\[
f'''(\lambda_X) = 6f_3. \tag{2.19}
\]

Hence, for a matrix \(X \) with an eigenvalues \(\lambda_X \) of multiplicity 4, the resolving linear system reads:

\[
\begin{align*}
(\lambda_X)^3 f_3 + (\lambda_X)^2 f_2 + \lambda_X f_1 + f_0 &= f(\lambda_X), \\
3(\lambda_X)^2 f_3 + 2\lambda_X f_2 + f_1 &= f'(\lambda_X), \\
6\lambda_X f_3 + 2f_2 &= f''(\lambda_X), \\
6f_3 &= f'''(\lambda_X).
\end{align*} \tag{2.20}
\]
whose explicit solution is:

\[
\begin{align*}
 f_0 &= f(\lambda_X) - \lambda_X f'(\lambda_X) + \frac{1}{2} \lambda_X^2 f''(\lambda_X) - \frac{1}{6} \lambda_X^3 f'''(\lambda), \\
 f_1 &= f'(\lambda_X) - \lambda_X f''(\lambda_X) + \frac{1}{2} \lambda_X^2 f'''(\lambda_X), \\
 f_2 &= \frac{1}{2} f''(\lambda_X) - \frac{1}{4} \lambda_X f'''(\lambda_X), \\
 f_3 &= \frac{1}{6} f'''(\lambda_X).
\end{align*}
\]

(2.21)

The polynomial expressions to compute the special functions \(M_1(H) \), \(M_2(S) \) and \(M_3(H) \), along with the associated scalar generating functions to compute the coefficients of the polynomials, are:

\[
\begin{align*}
 M_1(H) &= a_3 H^3 + a_2 H^2 + a_1 H + a_0 I, \quad m_1(z) := \frac{\exp(z) - 1}{z}, \\
 M_2(S) &= b_3 S^3 + b_2 S^2 + b_1 S + b_0 I, \quad m_2(z) := \frac{\log(z)}{z - 1}, \\
 M_3(H) &= c_3 H^3 + c_2 H^2 + c_1 H + c_0 I, \quad m_3(z) := \frac{2}{1 - z}.
\end{align*}
\]

(2.22) (2.23) (2.24)

While the functions \(m_1 \) and \(m_2 \) may be prolonged by continuity in their singularity, in fact:

\[
\lim_{z \to 0} \frac{\exp(z) - 1}{z} = 1, \quad \lim_{z \to 1} \frac{\log(z)}{z - 1} = 1,
\]

the function \(m_3 \) has an essential singularity in \(z = 1 \).

The computation of the three sets of four coefficients is carried out and discussed in the following Sections for some cases of interest. The Appendix A provides some details about the MATLAB® implementation of the evaluation of the polynomial expressions for the three matrix functions \(M_1(H) \), \(M_2(S) \) and \(M_3(H) \) as well as for the functions \(\log(T) \), \(\exp(L) \) and \(\text{cay}(L) \).

3. Computation of the coefficients of the polynomial expression of the functions \(M_1(H) \) and \(M_3(H) \). The matrix functions \(M_1 \) and \(M_3 \), as defined in (1.13) and (1.14), apply to a \(4 \times 4 \) Hamiltonian matrix. In the Section 2, it was pointed out that the coefficients of the polynomial expression of the quantities \(M_1(H) \) and of \(M_3(H) \) depend on the eigenvalues of the matrix \(H \) in argument. The four eigenvalues of a \(4 \times 4 \) Hamiltonian matrix come in complex-valued antipodal pairs, namely \(\lambda^a, -\lambda^a, \lambda^b, -\lambda^b \in \mathbb{C} \) and are computed by the expression [3]:

\[
\pm \frac{1}{2} \sqrt{\text{tr}(H^2) \pm \sqrt{\text{tr}^2(H^2) - 16 \det(H)}}.
\]

(3.1)

In order to determine the coefficients of the polynomial expressions, it is necessary to distinguish between the cases that the complex-valued numbers \(\lambda^a, \lambda^b \) are distinct or coincident. In the following sections, we cover three cases, namely:

- Four distinct eigenvalues of algebraic multiplicity 1;
- Two distinct eigenvalues, case \((\lambda_H, -\lambda_H, \lambda_H, -\lambda_H)\), with \(\lambda_H \in \mathbb{C} - \{0\} \);
- Three distinct eigenvalues, case \((\lambda_H, -\lambda_H, 0, 0)\), with \(\lambda_H \in \mathbb{C} - \{0\} \).

3.1. Coefficients of the polynomial expression of the matrix function \(M_1(H) \). The presents subsection covers the computation of the coefficients \(a_3, a_2, a_1 \) and \(a_0 \) pertaining to the
polynomial expression of the function $M_1(H)$ [2.22]. It pays to recall the analytic derivatives of the associated scalar function $m_1(z)$, namely:

$$m'_1(z) = \frac{e^z - e^{-z} - 1}{z^2}, \quad (3.2)$$

$$m''_1(z) = \frac{2e^z + z^2e^z - 2ze^z - 2}{z^4}, \quad (3.3)$$

$$m'''_1(z) = \frac{z^3e^z - 3ze^z - 6e^z + 6ze^z + 6}{z^4}. \quad (3.4)$$

3.1.1. Case I: Distinct eigenvalues of algebraic multiplicity 1.

The four distinct eigenvalues are denote by $\lambda_H^a, -\lambda_H^a, \lambda_H^b, -\lambda_H^b \in \mathbb{C}$. In order for such eigenvalues to be distinct from each other, it must hold that $\lambda_H^a \neq 0$, $\lambda_H^b \neq 0$ and $(\lambda_H^a)^2 \neq (\lambda_H^b)^2$. The current case, the resolving system is square Vandermonde and the explicit solutions [2.11] may be used to compute the coefficients a_3, a_2, a_1 and a_0. The explicit solution for the coefficients reads:

$$\begin{align*}
a_0 &= \frac{(\lambda_H^a)^3 \sinh(\lambda_H^b) - (\lambda_H^b)^3 \sinh(\lambda_H^a)}{\lambda_H^a \lambda_H^b ((\lambda_H^a)^2 - (\lambda_H^b)^2)}, \\
1 &= \frac{(\lambda_H^a)^2 \cosh(\lambda_H^b) - 1}{(\lambda_H^a)^2 - (\lambda_H^b)^2} - \frac{(\lambda_H^b)^2 \cosh(\lambda_H^a) - 1}{(\lambda_H^a)^2 - (\lambda_H^b)^2}, \\
a_2 &= -\frac{\lambda_H^a \sinh(\lambda_H^b) - \lambda_H^b \sinh(\lambda_H^a)}{\lambda_H^a \lambda_H^b ((\lambda_H^a)^2 - (\lambda_H^b)^2)}, \\
a_3 &= \frac{\cosh(\lambda_H^a) - 1}{(\lambda_H^a)^2 - (\lambda_H^b)^2} - \frac{\cosh(\lambda_H^b) - 1}{(\lambda_H^a)^2 - (\lambda_H^b)^2}.
\end{align*} \quad (3.5)$$

3.1.2. Case II: Two distinct eigenvalues, case $(\lambda_H, -\lambda_H, \lambda_H, -\lambda_H)$, with $\lambda_H \in \mathbb{C} - \{0\}$.

The explicit solution for the coefficients of the third-order polynomial reads:

$$\begin{align*}
a_0 &= \frac{3 \sinh(\lambda_H)}{\lambda_H} - \frac{1}{2} \cosh(\lambda_H), \\
a_1 &= \frac{2(\cosh(\lambda_H) - 1)}{\lambda_H^2} - \frac{\sinh(\lambda_H)}{2\lambda_H}, \\
a_2 &= \frac{\cosh(\lambda_H)}{2\lambda_H} - \frac{\sinh(\lambda_H)}{2\lambda_H}, \\
a_3 &= \frac{1 - \cosh(\lambda_H)}{\lambda_H} + \frac{\sinh(\lambda_H)}{2\lambda_H}.
\end{align*} \quad (3.6)$$

3.1.3. Case III: Three distinct eigenvalues, case $(\lambda_H, -\lambda_H, 0, 0)$, with $\lambda_H \in \mathbb{C} - \{0\}$.

Whenever the matrix H possesses the eigenvalue structure $(\lambda_H, -\lambda_H, 0, 0)$, with $\lambda_H \in \mathbb{C} - \{0\}$, the matrix function $M_1(H)$ is not well-defined (in fact, the function $m'_1(z)$ cannot be evaluated in $z = 0$).

3.2. Coefficients of the polynomial expression of the matrix function $M_3(H)$.

The presents subsection covers the computation of the coefficients c_3, c_2, c_1 and c_0 pertaining to the polynomial expression of the function $M_3(H)$ [2.24]. In order to complete the necessary calculations, it pays to recall the expressions of the derivatives of the auxiliary function $m_3(z)$, namely:

$$m'_3(z) = \frac{2}{(z - 1)^2}, \quad (3.7)$$

$$m''_3(z) = -\frac{4}{(z - 1)^3}, \quad (3.8)$$

$$m'''_3(z) = \frac{12}{(z - 1)^4}. \quad (3.9)$$
In the present case, the functions \(m_3, m_4, m_5, m_6 \) are rational, therefore, according to the expressions (2.11), the coefficients \(c_3, c_2, c_1 \) and \(c_0 \) are rational functions of the eigenvalues.

3.2.1. Case I: Distinct eigenvalues of algebraic multiplicity 1. The four distinct eigenvalues are denoted again by \(\lambda_H^0, -\lambda_H^0, \lambda_H^1, -\lambda_H^1 \in \mathbb{C} \). In order for the eigenvalues to be distinct from each other, it must hold that \(\lambda_H^0 \neq 1, \lambda_H^1 \neq 1 \) and \((\lambda_H^0)^2 \neq (\lambda_H^1)^2\). In this case, the explicit solutions (2.11) may be used to compute the coefficients \(c_0, c_2, c_1 \) and \(c_0 \). The coefficients of the third-order polynomial read:

\[
\begin{align*}
 c_0 &= c_1 = \frac{2(\lambda_H^0)^2}{(\lambda_H^0)^2-(\lambda_H^1)^2} - \frac{2(\lambda_H^1)^2}{(\lambda_H^1)^2-(\lambda_H^0)^2}, \\
 c_2 &= c_3 = \frac{2}{(\lambda_H^0)^2-(\lambda_H^1)^2} - \frac{2}{(\lambda_H^1)^2-(\lambda_H^0)^2}.
\end{align*}
\] (3.10)

In the present case, the polynomial expression of the matrix function \(M_3(H) \) simplifies in:

\[M_3(H) = (c_2H^2 + c_0I)(H + I), \]

because the coefficients \(c_3, c_2, c_1, c_0 \) result to be pairwise identical.

3.2.2. Case II: Two distinct eigenvalues, case \((\lambda_H, -\lambda_H, \lambda_H, -\lambda_H)\), with \(\lambda_H \in \mathbb{C} - \{0\} \). In order for the eigenvalues to result of multiplicity 2, it must hold that \(\lambda_H \neq \pm 1 \). The explicit solution for the coefficients of the third-order polynomial was computed as:

\[
\begin{align*}
 c_0 &= -\frac{\lambda_H+2}{2(\lambda_H+1)^2} = -\frac{3\lambda_H-2}{2(\lambda_H-1)^2}, \\
 c_1 &= \frac{2\lambda_H+3}{2\lambda_H(\lambda_H+1)^2} - \frac{4\lambda_H-3}{2\lambda_H(\lambda_H-1)^2}, \\
 c_2 &= \frac{1}{2}\frac{\lambda_H}{(\lambda_H-1)^2} - \frac{1}{2}\frac{\lambda_H}{(\lambda_H+1)^2}, \\
 c_3 &= \frac{2\lambda_H-1}{2\lambda_H(\lambda_H-1)^2} - \frac{1}{2\lambda_H(\lambda_H+1)^2}.
\end{align*}
\] (3.11)

3.2.3. Case III: Three distinct eigenvalues, case \((\lambda_H, -\lambda_H, 0, 0)\), with \(\lambda_H \in \mathbb{C} - \{0\} \). It must hold that \(\lambda_H \neq \pm 1 \). The explicit solution for the coefficients of the third-order polynomial was found to be:

\[
\begin{align*}
 c_0 &= c_1 = 2, \\
 c_2 &= -\frac{\lambda_H^2+\lambda_H-1}{\lambda_H^2(\lambda_H-1)}, \\
 c_3 &= -\frac{\lambda_H-\lambda_H^2+1}{\lambda_H^2(\lambda_H+1)}.
\end{align*}
\] (3.12)

It is worth underlying that the corresponding case, whenever using the function \(M_1 \), is undefined. Therefore, the Cayley transform based averaging can be applied to a wider variety of cases.

4. Computation of the coefficients of the polynomial expression of the function \(M_2(S) \). Given a \(4 \times 4 \) real-valued symplectic matrix \(S \), the coefficients of its characteristic polynomial \(p_S(z) \) may be computed through the Newton’s identities:

\[
\begin{align*}
 p_3 &= p_1 = -\text{tr}(S), \\
 p_2 &= \frac{1}{2}(\text{tr}^2(S) - \text{tr}(S^2)), \\
 p_0 &= 1.
\end{align*}
\] (4.1)
where the noticeable property \(\det(S) = 1 \) was used in the expression of \(p_0 \). Hence, the eigenvalues of a \(4 \times 4 \) symplectic matrix are given by the formula:

\[
\zeta \pm \sqrt{\frac{\zeta^2 - 4}{2}}, \quad \text{where} \quad \zeta = -p_1 \pm \sqrt{p_1^2 - 4p_2 + 8}. \tag{4.2}
\]

A consequence of the above formulas is that if \(\lambda \) denotes an eigenvalue of a symplectic matrix, then \(\lambda \) and \(\bar{\lambda}^{-1} \) must be eigenvalues as well (the over-bar denotes complex conjugation).

When all eigenvalues are of multiplicity 1, the following cases may occur:
1. Case of complex-valued quartet: There are four distinct complex-valued roots \(\lambda \in \mathbb{C}, \bar{\lambda}, \lambda^{-1}, \bar{\lambda}^{-1} \).
2. Case of a real-valued duet and a unimodular duet: There are two distinct real-valued roots \(\lambda_1 \in \mathbb{R}, \lambda_1^{-1} \), and two distinct complex-valued, unimodular roots \(\lambda_2 \in \mathbb{C}, \bar{\lambda}_2 \), with \(|\lambda_2| = 1 \) (the symbol \(|\cdot| \) denotes the modulus of a complex-valued number).
3. Case of two real-valued duets: There are four distinct real-valued roots \(\lambda_1 \in \mathbb{R}, \lambda_1^{-1}, \lambda_2 \in \mathbb{R}, \lambda_2^{-1} \).
4. Case of two unimodular duets: There are four distinct complex-valued roots \(\lambda_1 \in \mathbb{C}, \bar{\lambda}_1 \), with \(|\lambda_1| = 1 \), and \(\lambda_2 \in \mathbb{C}, \bar{\lambda}_2 \), with \(|\lambda_2| = 1 \).

The eigenvalues may come with multiplicity 2 and with multiplicity 4 as well. There are six possible cases that cover the occurrence of eigenvalues with multiplicity 2:
1. Case of eigenvalues \((x, x^{-1}, x, x^{-1}) \) with \(x \in \mathbb{R} - \{0, \pm 1\} \).
2. Case of eigenvalues \((x, x^{-1}, 1, 1) \) with \(x \in \mathbb{R} - \{0, \pm 1\} \).
3. Case of eigenvalues \((x, x^{-1}, -1, -1) \) with \(x \in \mathbb{R} - \{0, \pm 1\} \).
4. Case of eigenvalues \((e^{i\theta}, e^{-i\theta}, 1, 1) \) with \(\theta \in \mathbb{R} - \pi \mathbb{Z} \) (where the symbol \(\iota \) denotes the imaginary unit, namely, \(\iota^2 = -1 \)).
5. Case of eigenvalues \((e^{i\theta}, e^{-i\theta}, -1, -1) \) with \(\theta \in \mathbb{R} - \pi \mathbb{Z} \).
6. Case of eigenvalues \((1, 1, -1, -1) \).

There are two possible cases that cover the occurrence of eigenvalues with multiplicity 4:
1. Case of eigenvalues \((1, 1, 1, 1) \).
2. Case of eigenvalues \((-1, -1, -1, -1) \).

The present section covers the computation of the coefficients \(b_3, b_2, b_1 \) and \(b_0 \) pertaining to the polynomial expression of the function \(M_2(S) \) \((2.23)\). For the convenience of the reader, the expressions of the derivatives of the function \(m_2(z) \), are given as follows:

\[
m'_2(z) = -\frac{z \log(z) - 1 + 1}{z(z - 1)^2}, \tag{4.3}
\]

\[
m''_2(z) = \frac{4z + z^2(2 \log(z) - 3) - 1}{z^2(z - 1)^3}, \tag{4.4}
\]

\[
m'''_2(z) = -\frac{18z^2 - 9z + z^3(6 \log(z) - 11) + 2}{z^3(z - 1)^4}. \tag{4.5}
\]

In particular, the following cases are given full consideration:

- Case of complex-valued quartet \(\lambda, \bar{\lambda}, \lambda^{-1}, \bar{\lambda}^{-1} \);
- Case of real-valued quartet \((x, x^{-1}, y, y^{-1}) \) with \(x, y \in \mathbb{R} - \{0, \pm 1\} \);
- Case of purely imaginary quartet \((e^{i\theta}, e^{-i\theta}, e^{i\psi}, e^{-i\psi}) \) with \(\theta, \psi \in (0, 2\pi), \theta \neq \psi, \theta + \psi \neq 2\pi \).

4.1. Case I: Distinct eigenvalues of algebraic multiplicity 1, complex-valued quartet.

The four distinct eigenvalues of a symplectic matrix \(S \) are denoted as \(\lambda_S, \bar{\lambda}_S, \lambda_S^{-1}, \bar{\lambda}_S^{-1} \). The
explicit solutions (2.11) may be used to compute the coefficients \(b_1, b_2, b_3, b_4\) and \(b_6\). The explicit solution for the coefficients of the third-order polynomial was computed as:

\[
\begin{align*}
 b_0 &= \Im\left\{\frac{\log(\lambda_2)\lambda_2(\lambda_2^2-1)}{(\lambda_2-1)^2(\lambda_2+1)3\{\lambda_2(\lambda_2^2+1)\}}\right\}, \\
 b_1 &= \Im\left\{\frac{\log(\lambda_2)\lambda_2(\lambda_2^2-1)-\lambda_2^2(\lambda_2^2+1)}{(\lambda_2-1)^2(\lambda_2+1)3\{\lambda_2(\lambda_2^2+1)\}}\right\}, \\
 b_2 &= \Im\left\{\frac{\log(\lambda_2)\lambda_2(1-\lambda_2^2)+\lambda_2(1-\lambda_2^2)(\lambda_2^2+1)}{(\lambda_2-1)^2(\lambda_2+1)3\{\lambda_2(\lambda_2^2+1)\}}\right\}, \\
 b_3 &= \Im\left\{\frac{(\lambda_2^2-1)\log(\lambda_2)(1-\lambda_2)}{(\lambda_2-1)^2(\lambda_2+1)3\{\lambda_2(\lambda_2^2+1)\}}\right\},
\end{align*}
\]

(4.6)

where the symbol \(\Im\{\cdot\}\) denotes the imaginary part of a complex number.

4.2. Case II: Distinct eigenvalues of algebraic multiplicity 1, purely imaginary duets \((e^{i\theta}, e^{-i\theta}, e^{i\psi}, e^{-i\psi})\) with \(\theta, \psi \in (0, 2\pi), \theta \neq \psi, \theta + \psi \neq 2\pi\). With the considered configuration of the four eigenvalues, the explicit solution for the coefficients of the third-order polynomial becomes:

\[
\begin{align*}
 b_0 &= \epsilon \sin \left(\frac{\psi}{2}\right) + \frac{\theta \sin \left(\frac{\delta}{2}\right)}{2 \sin \left(\frac{\delta}{2}\right) \sin(2\psi) - 2 \cos(\psi) \sin(\theta)}, \\
 b_1 &= -\epsilon \sin \left(\frac{\psi}{2}\right) + \frac{\theta \sin \left(\frac{\delta}{2}\right)}{2 \sin \left(\frac{\delta}{2}\right) \sin(2\psi) - 2 \cos(\psi) \sin(\theta)}, \\
 b_2 &= -\epsilon \sin \left(\frac{\psi}{2}\right) + \frac{\theta \sin \left(\frac{\delta}{2}\right)}{2 \sin \left(\frac{\delta}{2}\right) \sin(2\psi) - 2 \cos(\psi) \sin(\theta)}, \\
 b_3 &= \epsilon \sin \left(\frac{\psi}{2}\right) - \frac{\theta \sin \left(\frac{\delta}{2}\right)}{2 \sin \left(\frac{\delta}{2}\right) \sin(2\psi) - 2 \cos(\psi) \sin(\theta)},
\end{align*}
\]

(4.7)

Note that the condition \(\theta, \psi \in (0, 2\pi)\) ensures that \(\sin \left(\frac{\psi}{2}\right) \neq 0\) and \(\sin \left(\frac{\psi}{2}\right) \neq 0\), and that the conditions \(\theta \neq \psi\) and \(\theta + \psi \neq 2\pi\) ensure that \(\sin(2\theta) - 2 \cos(\psi) \sin(\theta) \neq 0\) and \(\sin(2\psi) - 2 \cos(\theta) \sin(\psi) \neq 0\).

4.3. Case III: Distinct eigenvalues of algebraic multiplicity 1, purely real-valued duets \((x, x^{-1}, y, y^{-1})\) with \(x, y \in \mathbb{R} - (0, \pm 1), x \neq y, x \neq y^{-1}\). With the considered configuration of the four eigenvalues, the explicit solution for the coefficients of the third-order polynomial becomes:

\[
\begin{align*}
 b_0 &= -\frac{y \log(x)(x^4+1)}{y(x^4-1)(x^3-x^2-1)} - \frac{y \log(y)(y^4+1)}{x^2+1}, \\
 b_1 &= \frac{\log(x)(y^2-1)(x^3+xy+y^2+1)}{D} - \frac{\log(y)(x^2-1)(y^3+1)}{D}, \\
 b_2 &= -\frac{\log(x)(y^2+1)(x^2+1)(x^2+y^2+1)}{y(x^4-1)(x^3-x^2-1)} - \frac{\log(y)(x^4+1)(y^3+y)}{x(x^4-1)(y^2-1)}, \\
 b_3 &= \frac{xy \log(x)(x^2+1)(y^2-1)}{D} - \frac{xy \log(y)(x^2-1)(y^2+1)}{D},
\end{align*}
\]

(4.8)

with \(D := (1-x^2)(y^2-1)(x^2+1)\).

5. Conclusions. The present contribution completes the calculations carried out in the previous paper [5]. Specifically, the present paper covered the calculations necessary to compute some special matrix functions arising in the evaluation of the Kolmogoroff-Nagumo mean of a set of full \(5 \times 5\) optical transference matrices.
An alternative method to evaluate such special matrix functions, with special reference to the function $M_2(S)$, to be explored in the future, concerns a type of singular-value decomposition for symplectic matrices explained in [18].

The Kolmogorov-Nagumo mean is of interest in a number of applications involving different kinds of matrix groups, such as the space of special Euclidean matrices [6]. It will be interesting to apply the powerful method for matrix function computation based on generalized Lagrange polynomials [12] in future research efforts.

REFERENCES

Appendix A. MATLAB implementation. In the present Appendix, we show the MATLAB implementation of three cases of interest. Specifically, the Section A.1 details the functions that afford the evaluation of the functions $M_1(H)$, $M_2(S)$ and $M_3(H)$ in the hypothesis that all the eigenvalues of the matrix in argument are distinct. The Section A.2 suggests optimized codes to evaluate the functions $\log(T)$, $\exp(L)$ and $\text{cay}(L)$.

A.1. Evaluation of the matrix-functions M_1, M_2 and M_3. The MATLAB function that implements the numerical evaluation of the matrix-function $M_1(H)$ is shown below.
% Evaluation of the function $M_1(H)$ corresponding to the case that all the eigenvalues of the matrix H are distinct

```matlab
function P = FunctionM1(H)
% Calculation of lambda_a (z1) and lambda_b (z2)
z1 = sqrt( trace(Hˆ2) + sqrt( trace(Hˆ2)ˆ2 - 16*det(H) ) )/2;
z2 = sqrt( trace(Hˆ2) - sqrt( trace(Hˆ2)ˆ2 - 16*det(H) ) )/2;
% Calculation of the coefficients of the polynomial expression
a0 = (sinh(z2)*z1ˆ3 - sinh(z1)*z2ˆ3)/(z1*z2*(z1ˆ2 - z2ˆ2));
a1 = z2ˆ2*(cosh(z1) - 1)/(z1ˆ2*(z2ˆ2 - z1ˆ2)) - z1ˆ2*(cosh(z2) - 1)/(z2ˆ2*(z1ˆ2 - z2ˆ2));
a2 = (z2*sinh(z1) - z1*sinh(z2))/(z1*z2*(z1ˆ2 - z2ˆ2));
a3 = (cosh(z1) - 1)/(z1ˆ2*(z1ˆ2 - z2ˆ2)) - (cosh(z2) - 1)/(z2ˆ2*(z1ˆ2 - z2ˆ2));
% Calculation of the polynomial
P = a3*Hˆ3 + a2*Hˆ2 + a1*H + a0*eye(4);
```

The MATLAB© function that implements the numerical evaluation of the matrix-function $M_2(S)$ is shown below.

```matlab
% Evaluation of the function $M_2(S)$ corresponding to the case that all the eigenvalues of the matrix $S$ are distinct of the type ($\lambda, 1/\lambda, \lambda^*, 1/\lambda^*$)

```matlab
function P = FunctionM2(S)
% Calculation of lambda (L)
p2 = (trace(S)ˆ2 - trace(Sˆ2))/2;
p1 = -(trace(S));
x = (-p1 + sqrt(p1ˆ2 - 4*p2 + 8))/2;
z = (x + sqrt(xˆ2 - 4))/2;
% Calculation of the coefficients of the polynomial expression
zc = conj(z);
b0 = imag(log(z)*zc*(zˆ5 - 1)/((z-1)*(z+1)*imag(zc*(zˆ2+1))));
b1 = imag(log(z)*(1-zˆ5)*(zcˆ2+1)-z*zc*(zˆ3-1))/((z-1)*(z+1)*imag(zc*(zˆ2+1))));
b2 = imag(log(zc)*(z*(1-zcˆ5)+zc*(1-zcˆ3)*(zˆ2+1))/((zc-1)*(zc+1)*imag(zc*(zˆ2+1))));
b3 = imag(z*zc*log(z)*(1-zˆ3)/((z-1)*(z+1)*imag(zc*(zˆ2+1))));
% Calculation of the polynomial
P = b3*Sˆ3 + b2*Sˆ2 + b1*S + b0*eye(4);
```

The MATLAB© function that implements the numerical evaluation of the matrix-function $M_3(H)$ is shown below.

```matlab
% Evaluation of the function $M_3(H)$ corresponding to the case that all the eigenvalues of the matrix H are distinct

```matlab
function P = FunctionM3(H)
% Calculation of lambda_a (z1) and lambda_b (z2)
z1 = sqrt( trace(Hˆ2) + sqrt( trace(Hˆ2)ˆ2 - 16*det(H) ) )/2;
z2 = sqrt( trace(Hˆ2) - sqrt( trace(Hˆ2)ˆ2 - 16*det(H) ) )/2;
% Calculation of the coefficients of the polynomial expression
c0 = (2*z2ˆ2/((z1ˆ2-z2ˆ2)*(z1ˆ2-1)) - 2*z1ˆ2/((z1ˆ2-z2ˆ2)*(z2ˆ2-1)));
c1 = (2*z2ˆ2/((z1ˆ2-z2ˆ2)*(z1ˆ2-1)) - 2*z1ˆ2/((z1ˆ2-z2ˆ2)*(z2ˆ2-1)));
c2 = (2/((z1ˆ2-z2ˆ2)*(z1ˆ2-1)) - 2/((z1ˆ2-z2ˆ2)*(z2ˆ2-1)));
c3 = (2/((z1ˆ2-z2ˆ2)*(z2ˆ2-1)) - 2/((z1ˆ2-z2ˆ2)*(z1ˆ2-1)));
% Calculation of the polynomial
P = c3*Hˆ3 + c2*Hˆ2 + c1*H + c0*eye(4);
```

A.2. Evaluation of the complete functions $\exp(L)$, $\cay(L)$, $\log(T)$. The numerical evaluation of the quantities $\exp(L)$ and $\log(T)$ in (1.11) and of $\cay(L)$ in (1.12) may be facilitated by noting that the matrix functions M_1, M_2 and M_3 are always multiplied by a vector δ. Since matrix-to-vector multiplication is computationally lighter than matrix-to-matrix multiplication, a simple but effective optimization to lighten the computational cost would be to evaluate, for example, the product $M_1(H)\delta = (a_3 H^3 + a_2 H^2 + a_1 H + a_0 I)\delta$ by evaluating the products $H\delta$, $H(H\delta)$ and $H(H(H\delta))$, which are all matrix-to-vector products.
The function $\exp(L)$ may be evaluated through the following $\langle \text{PolyExp} \rangle$ MATLAB® function (where the evaluation of the sub-matrix $\exp(H)$ is based on the results presented in [8]):

```matlab
% Evaluation of the function $\exp(L)$ corresponding to the case that all the % eigenvalues of the matrix $H$ are distinct
function T = PolyExp(L)
% Extraction of the submatrices
H = L(1:4,1:4); v = L(1:4,5);
% Calculation of lambda_a (z1) and lambda_b (z2)
z1 = sqrt( trace(H^2) + sqrt( trace(H^2)^2 - 16*det(H) ) )/2;
z2 = sqrt( trace(H^2) - sqrt( trace(H^2)^2 - 16*det(H) ) )/2;
% Calculation of the coefficients of the polynomial expression of $M_1(H)$
a0 = (sinh(z2)*z1^3 - sinh(z1)*z2^3)/(z1*z2*(z1^2 - z2^2));
a1 = z2^2*(cosh(z1) - 1)/(z1^2*(z2^2 - z1^2));
a2 = (z2*sinh(z1) - z1*sinh(z2))/(z1*z2*(z1^2 - z2^2));
a3 = (cosh(z1)-1)/(z1^2*(z1^2 - z2^2)) - (cosh(z2)-1)/(z2^2*(z2^2 - z1^2));
% Calculation of the polynomial for delta
T1 = H*v; T2 = H*T1; T3 = H*T2;
delta = a3*T3 + a2*T2 + a1*T1 + a0*v;
% Calculation of the coefficients of the polynomial expression of $\exp(H)$
k0 = (z2^2*cosh(z1)-z1^2*cosh(z2))/(z2^2-z1^2);
k1 = (z2^2*sinh(z1)/z1 - z1^2*sinh(z2)/z2)/(z2^2-z1^2);
k2 = -(cosh(z1)+cosh(z2))/(z2^2-z1^2);
k3 = (2*(z1^2-z2^2)*(z1^2-z2^2))*(z1^2-z1^2));
% Calculation of the polynomial for $S$
S = k3*H3 + k2*H2 + k1*H + k0*eye(4);
% Packing the matrix T
T = [ S delta; zeros(1,4) 1];
```

The function $\cay(L)$ may be evaluated through the following $\langle \text{PolyCay} \rangle$ MATLAB® function (where the evaluation of the sub-matrix $\cay(H)$ is based on the results presented in [8]):

```matlab
function T = PolyCay(L)
% Extraction of the submatrices
H = L(1:4,1:4); v = L(1:4,5);
% Calculation of lambda_a (z1) and lambda_b (z2)
z1 = sqrt( trace(H^2) + sqrt( trace(H^2)^2 - 16*det(H) ) )/2;
z2 = sqrt( trace(H^2) - sqrt( trace(H^2)^2 - 16*det(H) ) )/2;
% Calculation of the coefficients of the polynomial expression of $M_3(H)$
c0 = (2*z2^2/((z1^2-z2^2)*(z1^2-1)) - 2*z1^2/((z1^2-z2^2)*(z2^2-1)));
c1 = (2*z2^2/((z1^2-z2^2)*(z1^2-1)) - 2*z1^2/((z1^2-2*z2^2)*(z2^2-1)));
c2 = (2/((z1^2-z2^2)*(z2^2-1)) - 2/((z1^2-2*z2^2)*(z1^2-1)));
c3 = (2/((z1^2-z2^2)*(z2^2-1)) - 2/((z1^2-2*z2^2)*(z1^2-1)));
% Calculation of the polynomial for delta
T1 = H*v; T2 = H*T1; T3 = H*T2;
delta = c3*T3 + c2*T2 + c1*T1 + c0*v;
% Calculation of the coefficients of the polynomial expression of $\cay(H)$
k0 = -(z1^2+1)/(z1^2-1) - (2*z1^2)/(z1^2-1); 
k1 = -(2*(z1^2 + z2^2 - 1))/(z1^2 - 1); 
k2 = 2/((z1^2 - 1) + (z2^2 - 1));
% Calculation of the polynomial for $S$
S = k2*(H3 + H2) + k1*H + k0*eye(4);
% Packing the matrix T
T = [ S delta; zeros(1,4) 1];
```
The function \(\log(T) \) may be evaluated through the following \texttt{PolyLog} MATLAB© function (where the evaluation of the sub-matrix \(\log(S) \) is based on the results presented in [8]):

```matlab
% Evaluation of the function log(T) corresponding to the case that all the
% eigenvalues of the matrix S are distinct of the type (lambda, 1/lambda,
% lambda*, 1/lambda*)
function L = PolyLog(T)
% Extraction of the submatrices
S = T(1:4,1:4); delta = T(1:4,5);
% Calculation of lambda (z)
p2 = (trace(S)ˆ2 - trace(Sˆ2)) / 2; p1 = -trace(S);
zi = (-p1 + sqrt(p1^2 - 4*p2 + 8)) / 2;
z = (zi + sqrt(zi^2 - 4)) / 2;
% Calculation of the coefficients of the polynomial expression of M_2(S)
zc = conj(z);
b0 = imag(log(z)*zc*(z^5 - 1) / ((z - 1)^2*(z + 1)*imag(zc*(z^2 + 1))));
b1 = imag(log(z)*(1 - z^5) + (z^2 + 1) - z*zc*(z^3 - 1)) / ((z - 1)^2*(z + 1)*imag(zc*(z^2 + 1)));
b2 = imag(log(zc)*(1 - z^5) + zc*(1 - z^3) + (z^2 + 1)) / ((z - 1)^2*(z + 1)*imag(zc*(z^2 + 1)));
b3 = imag(z*zc*log(z)*(1 - z^3) / ((z - 1)^2*(z + 1)*imag(zc*(z^2 + 1))));
% Calculation of the polynomial for v
T1 = S*delta; T2 = S*T1; T3 = S*T2;
v = b3*T3 + b2*T2 + b1*T1 + b0*delta;
% Calculation of the coefficients of the polynomial expression of log(S)
k0 = 2*real(zc*log(z)*(z^4 + 1) / ((z - 1)*(z + 1)*imag((z - 1)*zc)));
k1 = 2*real(log(zc)*(z^4 + 1) + (z^2 + 1) + z*zc*(z^2 + 1)) / ((z - 1)*(z + 1)*imag((z - 1)*zc)));
k2 = 2*real(log(zc) + (z^3 + zc) + (z^2 + 1)) / ((z - 1)*(z + 1)*imag((z - 1)*zc));
k3 = z*zc*2*real(log(zc)*(z^2 + 1) / ((z^2 + 1)*(z - zc)));
% Calculation of the polynomial for H
S2 = S^2; S3 = S*S2;
H = k3*S3 + k2*S2 + k1*S + k0*eye(4);
% Packing the matrix T
L = [ H v ; zeros(1,5) ];
```

15